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ABSTRACT
Training large deep learning models at scale is very challenging.
This paper proposes Chimera, a novel pipeline parallelism scheme
which combines bidirectional pipelines for efficiently training large-
scale models. Chimera is a synchronous approach and therefore no
loss of accuracy, which is more convergence-friendly than asynchro-
nous approaches. Compared with the latest synchronous pipeline
approach, Chimera reduces the number of bubbles by up to 50%; ben-
efiting from the sophisticated scheduling of bidirectional pipelines,
Chimera has a more balanced activation memory consumption.
Evaluations are conducted on Transformer based language models.
For a GPT-2 model with 1.3 billion parameters running on 2,048
GPU nodes of the Piz Daint supercomputer, Chimera improves
the training throughput by 1.16x-2.34x over the state-of-the-art
synchronous and asynchronous pipeline approaches.

CCS CONCEPTS
• Theory of computation → Parallel algorithms; • Comput-
ing methodologies → Neural networks.

KEYWORDS
distributed deep learning, pipeline parallelism, data parallelism,
operator parallelism, model parallelism

1 INTRODUCTION
Deep learning is continuing to deliver groundbreaking results on
the path towards human-level intelligence. This path is character-
ized by growing model size, in just six years, the compute require-
ments for model training grew by 300,000 times [3]. Transform-
ers [54] are a typical representative in this trend. As the model
size grows, Transformer based models have proven their success in
in the field of natural language processing [13, 43, 43, 54]. Recent
work [8–10, 14] shows that Transformers also achieve promising re-
sults in computer vision tasks, i.e., on par or better than other types
of models such as convolutional [31] and recurrent [21] networks.
These growing models must be trained on distributed accelera-
tor supercomputers. Even today’s models are too big to be stored
on a single accelerator—for example, GPT-3’s 175 billion parame-
ters [7] require 350 GiBmainmemory if storedwith 16 bits precision.
Switch transformers [17] have in their largest configuration 1.6 tril-
lion parameters, a 6.4 TiB storage requirements. Furthermore, the
necessary memory for activations, gradients, and optimizer state
during training at least triples these memory requirements.
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Thus, full model replicas at each accelerator, as used in simple
data parallelization schemes, are not sufficient. Large models must
instead be distributed among many, often hundreds of accelerators
to just fit into main memory. Deep neural networks consist of a
layered architecture and can thus be distributed in two ways: (1)
the operators of a layer can be split across multiple accelerators
in a method called operator parallelism or (2) the model could be
distributed layer by layer in a method called pipeline parallelism [5].
Operators of a typical fully-connected layer have computational
characteristics similar to matrix multiplication, and splitting such a
layer requires a communication volume of O(𝑛2/

√
𝑃) [27, 32] for

an 𝑛×𝑛 matrix. By exploiting the inherent structure of Transformer
based language models [51], operator parallelism requires two allre-
duce [35, 53] operations on the output activations for each basic
Transformer layer. Using a layer-wise model partition, pipeline
parallelism on the other hand only requires point-to-point commu-
nication to transfer the output activations between pipeline stages,
with each stage containing a group of consecutive layers. Therefore,
pipeline parallelism commonly has a lower communication cost
than operator parallelism. However, pipeline parallelism suffers
from bubbles or weight staleness (see Section 2), which are the
problems this work aims to solve. Overall, operator parallelism and
pipeline parallelism are orthogonal and complementary to each
other for distributing large deep learning models.

Yet, pipeline parallelism is not trivial: The backpropagation algo-
rithm needs to “remember” the output activations computed during
the forward pass as inputs to the backward pass (cf. Figure 2). This
creates wildly different memory requirements for each accelera-
tor in the pipeline, even though each accelerator has an identical
compute load. Specifically, for some recently proposed pipeline
approaches such as DAPPLE [16], PipeDream [38], and PipeDream-
2BW [39], the first accelerator of a pipeline of depth 𝐷 has to store
𝐷 such activations while the last accelerator requires memory for
one. This does not only lead to lower memory utilization in the
later pipeline stages (and only 50% overall), it also leads to reduced
performance because the micro-batch size has to be chosen to fit
the first accelerator in the pipeline. This imbalance can be alleviated
by restricting the number of micro-batches that are simultaneously
allowed in the pipeline. However, this introduces bubbles and limits
the overall system utilization.

Bothmicro-batch size and pipeline utilization are most important
for the computational efficiency: larger micro-batches improve per-
formance due to better re-use in the matrix-multiply-like operations
and less pipeline bubbles (stalls) utilize the existing accelerators
better. The computational efficiency relates directly to the cost and
time for of training a model. We propose a new pipelining scheme,
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called Chimera, that runs fully-packed bidirectional pipelines
through the same set of accelerators. Chimera enables

• to keep the overall training synchronous without relying on
stale weights,

• a higher pipeline utilization (less bubbles) than existing ap-
proaches and thus higher performance,

• the same peak activation memory consumption as the state-
of-the-art methods, with an extra benefit of more balanced
memory consumption, and

• easy configurability to various pipelined deep neural net-
works as well as system architectures guided by an accurate
performance model.

PipeDream PipeDream−2BW GPipe GEMS DAPPLE Chimera
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Figure 1: GPT-2 on 2,048 GPU nodes for mini-batch
size=2,048. We show the bubble ratio (pipeline overhead),
memory cost (OOM requires activation recomputation, de-
noted by 𝑅), and the best throughput (𝐷 is the corresponding
number of pipeline stages) for each approach. Details will be
discussed in Sections 2 and 4.2.

For example, GPT-3 required 314 Zettaflop (mixed fp16/fp32) to
train [7], which would take a single A100 GPU more than 100 years.
The estimated cost to train GPT-3 varies between $4.6m-$12m. We
show that Chimera enables end-to-end performance improvements
between 1.38x-2.34x per iteration for the synchronous training
regime for a comparable GPT-2 model on 2,048 GPU nodes of the
Piz Daint supercomputer, as shown in Figure 1. This enables savings
of more than $1.2m to $5m when training very large models on
practical systems.

2 BACKGROUND AND RELATEDWORK
Mini-batch stochastic gradient descent (SGD) [6] is the mainstream
method to train deep neural networks. Let 𝑏 be the mini-batch size,
𝑤𝑡 the neural network weights at step 𝑡 , (𝑥𝑖 , 𝑦𝑖 ) a sample in the
mini-batch, and ℓ a loss function. During training, it computes the
loss in the forward pass for each sample as ℓ (𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖 ), and then a
stochastic gradient in the backward pass as

𝑔𝑡 =
1
𝑏

𝑏∑
𝑖=0

∇ℓ (𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖 ) .

The model is trained in iterations such that 𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡𝑔𝑡 . In
more general terms, first-order stochastic gradient update rules can
take different forms (e.g., by adding a momentum term), which is
represented as𝑤𝑡+1 = 𝑤𝑡 +𝑈

(
𝑔𝑡 ,𝑤 (0,...,𝑡 ) , 𝑡

)
.

To scale up the training process to parallel machines, data par-
allelism [20, 33, 49, 60] is the common method, in which the mini-
batch is partitioned among 𝑃 workers and each worker maintains
a copy of the entire model. Gradient synchronization across the
workers is often implemented using an allreduce. However, recent
deep learning models [7, 13, 43, 45] scale rapidly from millions to
billions of parameters. Pure data parallelism may not work for these
large models since it either suffers from low efficiency caused by
synchronizing gradients of the entire model across the workers or
the model is simply too large to fit in a device.

Operator parallelism is a solution to train large models by parti-
tioning the operators of a layer among multiple workers, but it may
suffer from high communication volume as discussed in Section 1.
Hybrid approaches [29, 30], which combine operator parallelism
with data parallelism, suffer from the similar problem to the pure
operator parallelism.

To reduce the communication volume of operator parallelism,
pipeline parallelism is intensively studied [16, 19, 26, 28, 38, 39, 55,
57]. The key idea is to partition the model in a layer-wise way
and treat each worker (and the layers on it) as a pipeline stage.
The mini-batch is partitioned into multiple micro-batches, that are
pipelined across the stages to increase the resources utilization.
Recent work [16, 28, 39] also shows improved performance when
combining pipeline parallelism with data parallelism. However, to
efficiently pipeline deep neural network training is challenging
because of (1) a training step contains one one forward pass fol-
lowed by one backward pass, (2) the gradient computation in the
backward pass rely on the intermediate results of the forward pass,
and (3) to achieve good convergence accuracy the mini-batch size
is usually not very large.

Table 1 summarizes the symbols frequently used in the this paper.
Next, we analyze the pros and cons of the state-of-the-art pipeline
approaches when handling the challenges above from the aspects
listed in Table 2, and then show how our approach achieves the
best balance among all aspects. To better understand the analysis
in Table 2, Figure 2 presents an example for each approach.

Table 1: The list of symbols frequently used in the paper.

𝐷 The number of pipeline stages (depth)
𝑊 The number of replicated pipelines (width) for data

parallelism 1

𝑃 The number of workers (=𝑊 ∗ 𝐷)
𝐵 Micro-batch size
𝑁 The number of micro-batches executed by each worker

within a training iteration
�̂� Mini-batch size (= 𝐵 ∗ 𝑁 ∗𝑊 )
𝑀𝜃 Memory consumption for the weights of one stage
𝑀𝑎 Memory consumption for the activations of one stage
1 This paper considers the cases where all pipeline stages have balanced work-
load, and therefore are equally replicated to combine with data parallelism.

Bubbles in the pipeline. For better convergence quality, synchro-
nous approaches synchronize the gradients and flush the pipeline
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Table 2: Comparison between different pipeline schemes.

Pipeline Schemes Bubble Ratio Weights Memory Activations Memory Convergence Friendly

PipeDream [38] ≈ 0  [𝑀𝜃 , 𝐷 ∗𝑀𝜃 ] 1 [𝑀𝑎, 𝐷 ∗𝑀𝑎] 1
Asynchronous

PipeDream-2BW [39] ≈ 0  2𝑀𝜃  [𝑀𝑎, 𝐷 ∗𝑀𝑎] 1

GPipe [26] (𝐷 − 1)/(𝑁 + 𝐷 − 1)  𝑀𝜃  𝑁 ∗𝑀𝑎

Synchronous
GEMS [28] ≈ (𝐷 − 1)/(𝐷 + 1

2 )  2𝑀𝜃  𝑀𝑎

DAPPLE [16] (𝐷 − 1)/(𝑁 + 𝐷 − 1)  𝑀𝜃  [𝑀𝑎, 𝐷 ∗𝑀𝑎] 1

Chimera (this work) (𝐷 − 2)/(2𝑁 + 𝐷 − 2)  2𝑀𝜃  [(𝐷/2 + 1)𝑀𝑎, 𝐷 ∗𝑀𝑎] 1+
1 Intervals for the values across the workers.
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Figure 2: Pipeline parallelism schemes, with four pipeline stages (𝐷=4) and four micro-batches (𝑁=4) within a training itera-
tion, except that PipeDream updates the model after each backward pass on a micro-batch.

at the end of each training iteration, as shown in Figure 2. There-
fore, synchronous approaches lead to pipeline bubbles. To utilize
the pipeline, GPipe [26] injects 𝑁 micro-batches into the pipeline
concurrently; DAPPLE [16] uses the One-Forward-One-Backward
(1F1B [38, 39]) schedule with periodic flushes. Both GPipe and DAP-
PLE incur 2(𝐷-1) bubbles (i.e., 𝐷-1 bubbles in the forward passes
and 𝐷-1 bubbles in the backward passes). In contrast, Chimera (this
work) incurs 𝐷-2 bubbles (i.e., 𝐷/2-1 bubbles in the forward passes
and 𝐷/2-1 bubbles in the backward passes), which is about 50%
reduction compared with DAPPLE and GPipe. We define the bubble
ratio as the bubble overhead divided by the overall runtime of the
pipeline. In practice, the workload of a backward pass is about two
times of a forward pass, which leads to 𝐷/2-1 bubbles in the mid-
dle of the pipeline for Chimera (bubble ratio = (𝐷-2)/(3𝑁 /2+𝐷-2)),
as shown in Figure 2. We will discuss how to remove the middle
bubbles in Section 3.5 (bubble ratio = (𝐷-2)/(2𝑁+𝐷-2)).

Table 2 presents the bubble ratio for all approaches with the
consideration of typical workloads of forward and backward passes.
Although the bubble ratio of GPipe and DAPPLE decreases as𝑁 (the
number of micro-batches executed by each worker within a training
iteration) increases, a large enough 𝑁 (𝑁>=4𝐷 as suggested in [26])
usually cannot be obtained without hurting the efficiency for the
following three reasons: (1) There is usually an empirical maximum
�̂� (mini-batch size) for amodel, exceedingwhichwould compromise
model convergence [5, 12, 58–60]. (2) An increase of 𝑁 implies an
decrease of 𝐵 (micro-batch size) for a given �̂�. However, modern
accelerators require a large enough 𝐵 to achieve high computational
efficiency. (3) Scaling to large-scale machines by combining with
data parallelism (which has proven to be an effective way [16, 39])
would decrease 𝑁 for a given �̂�.

GEMS [28] is a memory-efficient pipeline approach which sched-
ulesmicro-batches among twomodel replicas. Since GEMS ismainly
designed for small �̂� and has at most two active micro-batches at
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Figure 3: Model replicas and bidirectional pipelines scheduling of Chimera.

the same time, its bubble ratio is much higher than the other ap-
proaches and cannot be alleviated by a larger 𝑁 . Asynchronous
approaches (such as PipeDream [38] and PipeDream-2BW [39])
do not have periodic pipeline flushes, so they do not have bubble
problem but with stale weights.
Memory consumption. Memory overhead mainly comes from
two aspects: the weight parameters and the activations (the inter-
mediate results of the forward pass required in the backward pass to
compute gradients). For GPipe and DAPPLE, each worker maintains
the weights of one pipeline stage. For GEMS and Chimera (with the
default setting), each worker maintains the weights of two pipeline
stages since there are two pipelines in two directions. PipeDream
updates themodel after each backward pass on amicro-batch (𝑁=1);
therefore, to ensure weight version consistency between forward
and backward passes, it requires to stash up to𝐷 versions of weights
on a worker, which has the same memory cost as pure data paral-
lelism. By using gradient accumulation (𝑁>=𝐷), PipeDream-2BW
reduces the number of weight versions to be stashed to 2.

GEMS injects only one micro-batch at the beginning of the
pipeline, and thus the activations of the forward pass on one micro-
batch are stored. However, this leads to low pipeline efficiency as
discussed previously. Since GPipe injects𝑁 micro-batches (𝑁 >= 𝐷

to fully utilize the pipeline) into the pipeline concurrently, the ac-
tivitions memory consumption is proportional to 𝑁 , which does
not scale well to large mini-batches. Using the classic (or a variant
of) 1F1B [38, 39] schedule, PipeDream, PipeDream-2BW, DAPPLE,
and Chimera inject up to 𝐷 micro-batches at the beginning of the
pipeline, which scale well to large mini-batches. By counting the
number of injected micro-batches on each worker of Chimera in
Figure 2, we can observe that Chimera has an extra benefit of a more
balanced activations memory consumption among the workers (see
Table 2 for the general analysis) than PipeDream, PipeDream-2BW,
and DAPPLE, and therefore a better memory resources utilization.
Note that the activations memory consumption can be reduced
using the technique of activation recomputation [11], but this is at
a cost of about 1/3 more computation overhead [16, 39].

ZeRO [44, 46] removes the memory redundancies by partitioning
the three model states (i.e., optimizer states, gradients, and param-
eters) across data-parallel processes, with a modest increasement
to the communication volume. Note that our pipeline approach is
orthogonal to ZeRO. To further reduce the memory consumption
of our pipeline approach is an interesting future work.

Convergence friendliness. By periodic pipeline flushes, synchro-
nous approaches ensure that the same version of weights is used
across all stages and all micro-batches in a training iteration, with-
out introducing staleness. From the algorithmic perspective, syn-
chronous approaches are equivalent to the standard andwell-proved
mini-batch SGD, and therefore, guarantee convergence.

To remove pipeline flushes, asynchronous approaches either
aggressively lead to weight versions mismatch between forward
and backward passes (such as AMPNet [19] and PipeMare [57]),
or conservatively introduce staleness to the weights while ensur-
ing weight versions consistency (such as PipeDream-2BW and
PipeDream). Although they empirically show promising conver-
gence results, the generality is lack of proof. More recent work [4,
34, 36, 37, 52] observes that asynchronous training algorithms may
result in lower convergence performance.

For the model accuracy, all the synchronous pipeline approaches
(such as Chimera, DAPPLE, GPipe and GEMS) are guaranteed to
achieve the same accuracy as the standard mini-batch SGD algo-
rithm. For the asynchronous approaches (such as PipeDream-2BW
and PipeDream), it is not safe to achieve the ideal accuracy as the
standard algorithm because of the introduced weight staleness, and
the convergence quality may exhibit variance on different neural
networks and tasks.

Overall, Chimera achieves the best balance of all aspects, as
presented in Table 2. We will discuss the implementation details of
Chimera in the following section.

3 THE SCHEME OF CHIMERA
3.1 Bidirectional Pipelines
We consider large-scale models with repetitive structures (i.e., the
same block repeated multiple times), such as Bert [13] and GPT-
2/3 [7, 43], which can be partitioned into balanced stages with an
equal number of blocks. The feature of repetitive structures is also
exploited in PipeDream-2BW [39]. How to generally partition any
model into stages with efficiency is not the topic of this paper and
has been well studied in recent work [16, 38].

The key idea of Chimera is to combine two pipelines in differ-
ent directions (we call them down and up pipelines, respectively)
together. Figure 3 shows an example with four pipeline stages (i.e.,
𝐷=4). Here we assume there are 𝐷 micro-batches executed by each
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worker within a training iteration, namely 𝑁=𝐷 , which is the min-
imum to keep all the stages active. How to scale to more than 𝐷
micro-batches (i.e., for 𝑁>𝐷) will be discussed in Section 3.5. In the
down pipeline, stage0∼stage3 are mapped to P0∼P3 linearly, while
in the up pipeline the stages are mapped in a completely opposite
order. The 𝑁 (assuming an even number) micro-batches are equally
partitioned among the two pipelines. Each pipeline schedules 𝑁 /2
micro-batches using 1F1B [38] strategy, as shown in the left part of
Figure 3. Then, by merging these two pipelines together, we obtain
the pipeline schedule of Chimera (upper right of Figure 3). Given an
even number of stages 𝐷 (which can be easily satisfied in practice),
it is guaranteed that there is no conflict (i.e., there is at most one
micro-batch occupies the same time slot on each worker) during
merging. We can see that the number of bubbles is reduced to 𝐷/2-1
in the forward and backward passes, respectively. By considering
the uneven workloads between forward and backward passes, we
get a more practical schedule of Chimera (bottom right of Figure 3).

For the models which have to use a small �̂� to guarantee con-
vergence, there maybe less than 𝐷 micro-batches in a training
iteration (i.e., 𝑁<𝐷). Chimera also supports the cases of 𝑁<𝐷 by
simply partitioning the 𝑁 micro-batches among the two pipelines
as evenly as possible, with an extreme case that 𝑁=1 where only
one micro-batch runs on a single pipeline.

Note that Chimera can be generalized to combine more than two
pipelines (will be discussed in Section 3.6), which further reduces
the bubbles and balances the activations memory consumption, but
at a cost of higher communication overhead and weights memory
consumption.
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Figure 4: Hide the gradient synchronization overhead by
overlapping.

3.2 Communication Scheme
Chimera uses p2p (point-to-point) communication to transfer the
intermediate activations and gradients (with respect to the inputs)
between pipeline stages in the forward pass and the backward
pass, respectively. Since Chimera combines bidirectional pipelines
together, collective communication (i.e., allreduce) is used to syn-
chronize the weight gradients across stage replicas before the next
training iteration. Figure 4(a) presents a simple way for gradient
synchronization, namely synchronizing the gradients for each stage
maintained by the workers after all the local computation of the
current iteration is finished. Note that the gradient synchronization
for the middle stages is partially overlapped by the computation on
the beginning and the end stages.

For a deeper communication overlap, we launch allreduce ea-
gerly by utilizing the bubbles in the pipeline. Taking P0 and P3
in Figure 4(b) as an example, after these two workers finish the
backward passes on micro-batch 3 and micro-batch 1, respectively,
the calculation for the weight gradients of stage3 has been finished;
therefore, P0 and P3 can launch an asynchronous allreduce using
nonblocking collectives [23, 25] to synchronize the gradients of
stage3 as soon as they are finished, and a wait operation is called
after all the local computation to make sure the allreduce is finished.
In this way, the gradient synchronization for stage3 is overlapped
by the bubbles and the following computation. However, unlike P0
and P3, we choose not to conduct eager gradient synchronization
for stage2 (a middle stage) on P1 and P2, since there is no bubble
from the completion of stage2’s gradients to the end of local com-
putation. Although the asynchronous communication may proceed
while the computation happens, it may cause additional overheads
(initialization, threading etc. [24]), which could extend the critical
path of the pipeline and jeopardize the overall performance. Perfor-
mance modelling of the communication scheme will be presented
in Section 3.4.
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Figure 5: Combine pipeline parallelism with data paral-
lelism in Chimera (𝑊 = 2, 𝐷 = 4).

3.3 Hybrid of Pipeline and Data Parallelism
Chimera supports a hybrid of pipeline and data parallelism. The
bidirectional pipelines of Chimera are replicated𝑊 times to scale
to𝑊 · 𝐷 workers. Since we consider the large models which can
be easily partitioned into balanced stages, all 𝐷 stages are equally
replicated𝑊 times in hybrid parallelism. When scaling to the par-
allel machines equipped with high performance interconnected
networks (such as Infiniband [50], Cray Aries [2] or Slingshot [48],
and NVLink [18]), hybrid parallelism usually achieves better perfor-
mance than the pure pipeline parallelism [16, 39]. This is because
pure pipeline parallelism has𝑊 · 𝐷 stages in the pipeline, while
hybrid parallelism has 𝐷 stages (𝑊 times less) which helps to re-
duce the p2p communication overhead between stages and increase
the computation workload of each stage. Although hybrid paral-
lelism leads to gradient synchronization between stage replicas,
the overhead of it can be alleviated by the aforementioned high
performance interconnected networks. However, as𝑊 increases
(𝐷 decreases), pipeline stages become coarser, until at some point
the increased gradient synchronization overhead cannot be amor-
tized by the reduced p2p communication overhead. Therefore, it is
important to find the sweet spot to achieve the best performance.

Figure 5 presents an example with𝑊 =2 and 𝐷=4. Note that after
combining with data parallelism, the size of local gradients to be
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synchronized does not change, but the number of processes partici-
pating in the gradient synchronization increases by𝑊 times. Also,
we use the same communication scheme as discussed in Section 3.2
to overlap the gradient synchronization overhead in hybrid par-
allelism. In the next section we will discuss how to find the best
configuration of𝑊 and 𝐷 based on performance modelling.

3.4 Configuration Selection Based on
Performance Modelling

Given the mini-batch size �̂� and the number of workers 𝑃 , the
configuration of 𝐵,𝑊 , and𝐷 largely affects the training throughput.

Larger micro-batch size (𝐵) usually improves the computational
efficiency of the accelerators. Since Chimera greatly alleviates the
bubble problem, it greedily chooses to use the maximum micro-
batch size fitting in the device memory. Compared with the exist-
ing synchronous pipeline approaches which have to consider the
trade-off between bubble and computational efficiency, the greedy
strategy of Chimera significantly reduces the tuning space. 
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Figure 6: The free regions to overlap gradient synchroniza-
tion in Chimera, where 𝑁 = 𝐷 = 6.

To select the best configuration of𝑊 and 𝐷 , we build a perfor-
mance model to predict the runtime of a single training iteration
(represented by 𝑇 ) for each available configuration. For the compu-
tation overhead, we measure the runtime of the forward pass on a
single pipeline stage (represented by 𝐹𝑡 ) using micro benchmarks.
The runtime of backward pass (represented by 𝐵𝑡 ) is modelled as
two times of the forward pass if no activation recomputation is
used, and three times otherwise. We define the critical path as a
series of pipeline stages with dependency that determine the overall
computation overhead of a single training iteration. An example of
critical path is shown in Figure 6. Let𝐶𝑓 and𝐶𝑏 denote the number
of forward passes and backward passes on the critical path of the
pipeline, respectively. For the example shown in Figure 6,𝐶𝑓 =6 and
𝐶𝑏=10. The total computation overhead is 𝐹𝑡𝐶𝑓 +𝐵𝑡𝐶𝑏 .

To model the communication overhead, we assume bidirectional
and direct point-to-point communication between the compute
nodes, and use the classic Latency-Bandwidth (𝛼 − 𝛽) cost model.
The cost of sending a message of size 𝐿 is 𝛼 + 𝛽𝐿, where both 𝛼
(latency) and 𝛽 (the transfer time per word) can be measured using
micro benchmarks. As discussed in Section 3.2, Chimera has two
types of communication: p2p communication (𝐶𝑜𝑚𝑚𝑝2𝑝 ) between
stages and allreduce (𝐶𝑜𝑚𝑚𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 ) for gradient synchronization.
𝐶𝑜𝑚𝑚𝑝2𝑝 can be simply modelled by the 𝛼−𝛽 cost model. The total
p2p communication cost is (𝐶𝑓 +𝐶𝑏 )𝐶𝑜𝑚𝑚𝑝2𝑝 . Note that𝐶𝑜𝑚𝑚𝑝2𝑝
can be partially overlapped by the intermediate bubbles if there are
any, but to simplify the model we do not consider that effect.

For𝐶𝑜𝑚𝑚𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 , we assume its implementation makes use of
Rabenseifner’s algorithm [42, 53], whose cost is

𝐶𝑜𝑚𝑚𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 = 2(𝑙𝑜𝑔2𝑟 )𝛼 + 2(𝑟 − 1)𝛽𝐿/𝑟
where 𝐿 is the size of gradients to be synchronized and 𝑟 is the num-
ber of stage replicas. Note that Rabenseifner’s algorithm reaches the
lower bound on the bandwidth term for host-based allreduce, and
therefore works best for large models. We model the effect of com-
munication overlapping (discussed in Section 3.2) for𝐶𝑜𝑚𝑚𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒 .
Figure 6 shows an example of the free regions (i.e., exceeding
which will increase the total runtime) utilized in Chimera to over-
lap the gradient synchronization. Note that there are two stage
replicas on each worker. Regions (a) and (b) can be utilized to
overlap the gradient synchronization for the first stage replica
(the one with a larger stage ID), and region (c) can be utilized
to overlap the gradient synchronization for both stage replicas.
Let 𝐶𝑜𝑚𝑚𝑢𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 (𝑖) represent the portion of 𝐶𝑜𝑚𝑚𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒

which can not be overlapped by the free regions on worker 𝑖 , and
then the max of 𝐶𝑜𝑚𝑚𝑢𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 (𝑖) among the 𝐷 workers con-
tributes to the total runtime.

Overall, the runtime of a single training iteration is modelled as

𝑇 = (𝐹𝑡 +𝐶𝑜𝑚𝑚𝑝2𝑝 )𝐶𝑓 + (𝐵𝑡 +𝐶𝑜𝑚𝑚𝑝2𝑝 )𝐶𝑏+
𝑚𝑎𝑥{𝐶𝑜𝑚𝑚𝑢𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 (𝑖) : 𝑖 ∈ [0, 𝐷 − 1]}. (1)

We use this model to select the best configuration of𝑊 and 𝐷 (see
Section 4.2.2).
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Figure 7: Scale to more than 𝐷 micro-batches within a train-
ing iteration (i.e., 𝑁 > 𝐷) for Chimera.

3.5 Scale to More Micro-Batches
For a large �̂�, there may be more than 𝐷 micro-batches in a training
iteration for each worker (i.e., 𝑁>𝐷), especially when the compute
resources are limited. To scale to a large �̂�, we first choose the
maximum 𝐵 with 𝐷 micro-batches to saturate the device memory,
and schedule these 𝐷 micro-batches using bidirectional pipelines as
discussed previously. Then, we use the schedule of 𝐷 micro-batches
as a basic scheduling unit, and scale to a large �̂� by concatenating𝐾
(𝐾=𝑁 /𝐷 and 𝑁=�̂�/𝑊 /𝐵) basic units together. Figure 7(a) presents
an example with 𝑁=2𝐷 micro-batches in a training iteration for
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Figure 8: Chimera with a combination of four 8-stage pipelines.

each worker, which has two basic scheduling units (i.e., 𝐾=2). We
propose threemethods to concatenatemultiple basic units. (1)Direct
concatenation, as shown in Figure 7(b). The bubbles at the end of
the first basic unit can be occupied by the forward passes at the
beginning of the second basic unit. If the backward pass has the
same workload as the forward pass, basic units can be concatenated
seamlessly. However, backward pass has about two times workload
of the forward pass, which results in intermediate bubbles.

To remove the intermediate bubbles of direct concatenation, we
propose (2) forward doubling (shown in Figure 7(d)) and (3) back-
ward halving, in which the key idea is to equalize the workloads of
forward and backward passes. In forward doubling, we increase the
number of micro-batches for each forward pass to two, and then
concatenate the two consecutive chunks of backward passes, each
of which has only one micro-batch, as shown in Figure 7(c). Then,
we fine-tune the schedule to remove 50% bubbles at the beginning
of the pipeline, as shown in Figure 7(d). Forward doubling removes
the intermediate bubbles, but it leads to two times activation mem-
ory consumption and therefore may exceed the device memory
capacity. We resort to activation recomputation to reduce memory
overhead. Note that recomputation increases the workload of the
backward pass, but the p2p communication overhead in the forward
passes is also doubled because of the outputs for two micro-batches;
therefore, we still treat the forward pass (with two micro-batches)
and the backward pass (with one micro-batch and recompute) have
approximately equal workload. Forward doubling prefers large mod-
els in which even 𝐵=1 exceeds the device memory capacity, since
in such case activation recomputation must be used. For smaller
models which has a larger 𝐵, we propose to use backward halving,
which uses the same schedule as forward doubling, except that
rather than executing two micro-batches in the forward pass but to
halve the micro-batch size of the backward pass. Backward halving
does not increase the activation memory (thus no activation recom-
putation), but it may lower the computational efficiency because of
using a sub-max 𝐵. To select the best of the three methods is not a
priori, which we rely on empirical results. Note that both forward
doubling and backward halving have total 𝐷-2 bubbles (𝐷/2-1 in
the forward passes and 𝐷/2-1 in the backward passes), as shown in
Figure 7(d), which is about a 50% reduction compared with DAPPLE
and GPipe. For 𝐾>2, we use the schedule of 2𝐷 micro-batches as a
basic scheduling unit (as shown in Figure 7(c)) for forward doubling

and backward halving, and concatenate ⌊𝑘/2⌋ basic units and the
residual 𝐷 micro-batches if 𝐾 is odd.

One more benefit for both forward doubling and backward halv-
ing is that they have more space to overlap p2p communication
(in the forward passes) than the classic 1F1B schedule [38, 39]. In
Figure 7(d), taking the forward pass onmicro-batch 1 as an example,
the p2p communication from P1 to P2 can be overlapped by the
intermediate forward pass computation, while for 1F1B there may
be not enough computation to overlap p2p communication.

3.6 Generalize to More than Two Pipelines
So far we have only discussed the case that two pipelines (one down
and one up) are combined together in Chimera. Yet, Chimera can
be generalized to combine more than two pipelines for an even
number of pipeline stages (i.e., 𝐷 is even). For 𝑄=𝐷/2, let 𝐹 denote
the set of all the divisors of 𝑄 , including 1 and 𝑄 itself. For any
𝑓 ∈ 𝐹 , we can generate a scheme for Chimera, which combines 𝑓
down pipelines and 𝑓 up pipelines together and each pipeline has
𝐷/2𝑓 micro-batches scheduled by the 1F1B strategy. Figure 8 gives
an example in which Chimera combines four pipelines with eight
stages (i.e.,𝐷=8 and 𝑓 =2). For the down pipeline 𝑖 (𝑖 ∈ [0, 𝑓 −1]), the
𝐷 stages are mapped to the 𝐷 workers in turn with the first stage
(i.e., stage0) being mapped to the worker 𝑖 ∗ (𝐷/𝑓 ). For example, for
the down pipeline1 in Figure 8, stages [0,1,2,3,4,5,6,7] are mapped to
workers [4,5,6,7,0,1,2,3], respectively. For the 𝑓 up pipelines, the 𝐷
stages are mapped to the𝐷 workers in a completely reverse order of
the corresponding down pipeline. It can be easily demonstrated that
the schedules of the 2𝑓 pipelines can be overlaid without conflict.

Table 3: Chimera with 2𝑓 pipelines.

Model Replicas 2𝑓
Bubble Ratio (𝐷 − 2𝑓 )/(2𝑓 𝑁 + 𝐷 − 2𝑓 )
Weights Memory 2𝑓 ∗𝑀𝜃

Activations Memory [(𝐷 − 𝐷/2𝑓 + 1)𝑀𝑎, 𝐷 ∗𝑀𝑎]

For any 𝑓 ∈ 𝐹 , Chimera can scale to more micro-batches (i.e.,
𝑁>𝐷) using the methods discussed in Section 3.5. For a given 𝑓 ,
Chimera incurs 2(𝐷/𝑓 /2-1) bubbles, but has to maintain 2𝑓 model
replicas and synchronize the gradients of 2𝑓 stages on each worker.
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The larger the value of 𝑓 , the less bubbles (and the more balanced
activations memory consumption), but also the higher gradient syn-
chronization overhead and weights memory consumption. When
𝑓 =𝑄 , Chimera degrades to pure data parallelism. Empirical results
in Section 4.4 show that 𝑓 >1 rarely brings more performance bene-
fit on the models used for evaluation. Thus, 𝑓 =1 (i.e., a combination
of two pipelines) is the default setting for Chimera in this paper,
unless otherwise stated. We expect that 𝑓 >1, whose features are
summarized in Table 3, would further improve the performance for
future deep models with deeper pipeline.

4 EXPERIMENTAL EVALUATION
We conduct our experiments mainly on the CSCS Piz Daint super-
computer. Each Cray XC50 compute node contains an Intel Xeon
E5-2690 CPU, and one NVIDIA P100 GPU with 16 GB global mem-
ory. The compute nodes of Piz Daint are connected by Cray Aries
interconnect network in a Dragonfly topology.

We also evaluate the performance on a small cluster equipped
with 32 NVIDIA V100 GPUs. The cluster has four GPU servers
connected by Infiniband, and each server has eight V100 GPUs
with NVLink. Each V100 GPU has 32 GB global memory.

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

M
em

or
y 

co
ns

um
pt

io
n 

(G
B

)

Chimera DAPPLE GEMS GPipe PipeDream PipeDream-2BW

OOM OOM OOM

OOM OOM OOM

OOM OOM

OOM OOM

OOM

OOM

Bert−48 (W = 2, D = 16, B = 8, B = 512)ˆ

Bert−48 (W = 4, D = 8, B = 8, B = 512)ˆ

Bert−48 (W = 4, D = 8, B = 16, B = 512)ˆ

GPT−2 with 32 layers (W = 1, D = 32, B = 1, B = 512)ˆ

GPT−2 with 32 layers (W = 2, D = 16, B = 1, B = 512)ˆ

GPT−2 with 32 layers (W = 2, D = 16, B = 2, B= 512)ˆ

Figure 9: Memory consumption distribution among 32 GPU
nodes of Piz Daint. The red and blue circles indicate themax-
imum and minimummemory consumption, respectively.

We evaluate the performance of the schemes listed in Table 2,
which covers the state-of-the-art. For a fair comparison, all schemes
are implemented in PyTorch [41] with GLOO [15] distributed back-
end for both the point-to-point (p2p) communication between
pipeline stages and gradient synchronization (allreduce) across the
stage replicas, and GPU devices are utilized for acceleration. Al-
though NCCL [40] backend of PyTorch performs better for allreduce

Table 4: Neural networks used for evaluation.

Networks Layers Parameters Mini-batch size

Bert-48 48 669,790,012 >=256
GPT-2 64 1,389,327,360 >=512

across GPU nodes (with GPUDirect RDMA), it does not support
p2p communication. Using NCCL for gradient synchronization and
GLOO for p2p at the same time fails, which is also observed in
PipeDream [38]. We use the language models summarized in Ta-
ble 4 for evaluation, and the max sequence length of Bert-48 and
GPT-2 are set to 128 and 632 respectively, unless otherwise stated.
The mini-batch size and sequence length we use are consistent with
those in the machine learning community [13, 43, 56, 59]. Since
Chimera is a synchronous approach without compromising conver-
gence accuracy, we focus on the training throughput comparison.

4.1 Memory Consumption
Figure 9 presents the memory consumption (including both activa-
tions and weights) distribution among 32 GPU nodes of Piz Daint
for Bert-48 and GPT-2 in different configurations. Since GPipe in-
jects all the micro-batches at once, the high activation memory
cost of it leads to OOM (Out of Memory) in all the configurations.
PipeDream has the second highest memory consumption because
up to 𝐷 versions of weights have to be stashed. PipeDream-2BW
reduces the stashed weights versions to 2. However, for language
models, the first stage usually has more weights than other stages
since it includes an extra embedding layer. Also, the pipeline sched-
ule of PipeDream-2BW and DAPPLE determines that the activa-
tion memory consumption on the first worker is the highest. This
double imbalance causes that the first worker commonly has the
peak memory consumption for both PipeDream-2BW and DAPPLE.
Since PipeDream-2BW stashes two versions of weights, it incurs
OOM as pipeline stages get coarser. In contrast, the schedule of
bidirectional pipelines in Chimera determines that it has a more
balanced memory consumption as shown in Figure 9, which is con-
sistent with the analysis in Talbe 2. With the lowest activations
memory cost occurring on the first (also the last) worker (see Fig-
ure 2), the excessive weights of the first stage can be amortized in
Chimera. Thus, although Chimera maintains two model replicas,
it still has a little lower peak memory consumption than DAPPLE
(the state-of-the-art synchronous approach which maintains one
copy of the model) for four out of six configurations in Figure 9.
Although GEMS achieves the lowest (and also balanced) memory
consumption among all approaches, this is at the cost of loss of
parallelism. Overall, Chimera is on par with the state-of-the-art
for the peak memory consumption, with a more balanced usage
among the workers. These results are consistent with our analysis
in Table 2.

4.2 Parallel Scalability
We first find the best configuration for each approach, and compare
their best performance in the test of weak scaling.
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Figure 10: Performance tuning for the baselines for Bert-48 on 32 GPU nodes of Piz Daint. �̂�=512, except for PipeDream uses
the maximum �̂� fitting in the memory. 𝑅 denotes activation recomputation to avoid OOM. 𝑆𝑡𝑎𝑟 marks the best performance.

4.2.1 Performance Optimization Space for the Baselines. Given the
mini-batch size �̂� and the number of workers 𝑃 , the best config-
uration of 𝐵 (micro-batch size), 𝐷 ( pipeline stages), and𝑊 (the
number of replicated pipelines) is not obvious a priori because
of the trade-offs (i.e., computational efficiency and bubbles, allre-
duce and p2p communication overhead). We search the space of
the parameters (𝑊 , 𝐷 , and 𝐵 (for power-of-two)) to find the best
performance for each baseline. The results for Bert-48 on 32 GPU
nodes are presented in Figure 10.

For synchronous baselines (such as GPipe and DAPPLE), the
value of 𝐵 affects both computational efficiency and the bubble ra-
tio. The planner of DAPPLE [16] gives an answer for how to select
the configuration of𝑊 and 𝐷 based on the profiling information,
but it is not clear for how to select the best 𝐵. From Figure 10 we
can see the highest throughput of both DAPPLE and GPipe (with
activation recomputation) is achieved by (𝑊 =8, 𝐷=4, 𝐵=4), under
which they hit the sweet spot for the trade-off between p2p commu-
nication overhead and allreduce communication overhead by (𝑊 =8,
𝐷=4), and the sweet spot for the trade-off between bubble ratio and
computational efficiency by 𝐵=4 (and 𝑁=16). GEMS prefers a large
𝐵 for high computational efficiency since a smaller 𝐵 does not help
a lot to reduce the bubble ratio, and therefore its best performance
is achieved by (𝑊 =8, 𝐷=4, 𝐵=32).

Asynchronous baselines (PipeDream-2BW and PipeDream) al-
ways prefer the maximum 𝐵 fitting in the device memory, since
there is no bubble problem for them. Note that PipeDream conducts
gradient synchronization across𝑊 pipelines after each backward
pass on a micro-batch, thus its �̂� is limited by the maximum 𝐵. Since
the frequent gradient synchronization of PipeDream leads to high
allreduce overhead, its best performance is achieved with a deeper
pipeline than others, namely by (𝑊 =4, 𝐷=8, �̂�=48). PipeDream-
2BW scales to large �̂� by accumulating the gradients for more than
𝐷 micro-batches (i.e., 𝑁>=𝐷), and its best performance is achieved
by (𝑊 =8, 𝐷=4, 𝐵=16) with activation recomputation.

For GPT-2, we present the performance tuning for each baseline
by searching the parameter space in Figure 11.
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Figure 11: Performance tuning for the baselines for GPT-2
on 512 GPUnodes of Piz Daint. �̂�=512, except for PipeDream
uses themaximum �̂� fitting in the devicememory. 𝑅 denotes
activation recomputation to avoid OOM. 𝑆𝑡𝑎𝑟 marks the best
performance.

4.2.2 Performance Modelling of Chimera. We first evaluate the
performance of Chimera with different gradient synchronization
strategies discussed in Section 3.2. We use eager-sync to denote
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Figure 13: The practical and modelled throughput of
Chimera on Piz Daint for Bert-48 on 32 GPU nodes with
�̂�=256, and GPT-2 on 512 GPU nodes with �̂�=512.

eager synchronization also conducted for the middle stages, and
eager-sync-opt to denote eager synchronization not conducted for
the middle stages. Results in Figure 12 show that eager-sync-opt
achieves higher (e.g., 1.09x on 64 nodes) throughput than eager-sync.
These empirical results support our claim in Section 3.2.

Figure 13 presents the practical training throughput of Chimera
and the throughput predicted by the performance model (see Sec-
tion 3.4). Note that since Chimera greatly alleviates the bubble
problem, it greedily chooses the largest 𝐵 that fits in the device
memory. The performance model is mainly used to select the best
configuration of𝑊 and 𝐷 . Therefore, Chimera has a much smaller
tuning space compared with the synchronous baselines. The error
of the performance model (see Equation 1) is within 10% for both
Bert-48 and GPT-2. For Bert-48, the performance model accurately
selects the best configuration, i.e.,𝑊 =8 and𝐷=4. For GPT-2, the per-
formance model selects𝑊 =16 and 𝐷=32, but the best performance
is achieved by𝑊 =64 and 𝐷=8. However, the best performance is
only 1.7% higher than the one selected by the model. The inaccurate
prediction is mainly because our model may overestimate the cost

of activation recomputation used with𝑊 =64 and 𝐷=8. Although
these two configurations achieve very close performance for GPT-2,
it is worth mentioning that 𝐷=8 works better when scaling to large
mini-batches because of less computation and p2p communication
overhead, while 𝐷=32 works better when scaling to more machines
because of less gradient synchronization overhead.

4.2.3 Comparison with the Best Performance. Figures 14 and 15
present the results of weak scaling on Bert-48 and GPT-2, respec-
tively. For all the baselines we present the best performance after
searching the parameter space at different scales. Especially, to
achieve the best performance, GPipe switches from 𝐷=8 to 𝐷=16
for GPT-2 on more than 512 GPU nodes. For Chimera, we present
the practical throughput using the best configuration predicted by
the performance model. The configuration used by each approach
for the best performance is annotated in the legends of the figures.
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PipeDream whose �̂� scales from 128 to 512.

For both Bert-48 and GPT-2, Chimera outperforms all the base-
lines at all scales. For Bert-48 on 64 nodes, Chimera outperforms
PipeDream and PipeDream-2BW (asynchronous approaches) by
1.94x and 1.17x, respectively, and outperforms GPipe, GEMS, and
DAPPLE (synchronous approaches) by 1.32x, 2.41x, and 1.19x, re-
spectively. PipeDream frequently synchronizes the gradients after
each backward pass, which compromises the training throughput.
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PipeDream-2BW uses 𝐵=16 with recomputation to achieve the
best performance. Although PipeDream-2BW does not have bubble
problem, it may not have enough computation to fully overlap the
gradient synchronization overhead. GEMS has the highest bubble
ratio and therefore has lower throughput than the others. To achieve
the best performance, GPipe and DAPPLE use 𝐵=4 to reduce the
bubble ratio but at the cost of lower computational efficiency. In
contrast, Chimera has low bubble ratio while using 𝐵=8 for higher
computational efficiency, and therefore outperforms GPipe and
DAPPLE.

For GPT-2 on 2,048 nodes, Chimera outperforms PipeDream and
PipeDream-2BW (asynchronous approaches) by 2.01x and 1.16x,
respectively, and outperforms GPipe, GEMS, and DAPPLE (synchro-
nous approaches) by 1.42x, 2.34x, and 1.38x, respectively. There
are two major advantages of Chimera: (1) Chimera has a low bub-
ble ratio; (2) benefiting from a balanced memory consumption
(as discussed in Section 4.1), Chimera with 𝐷=32 fits in the de-
vice memory without activation recomputation, while all other
approaches except GEMS require recomputation. Chimera out-
performs PipeDream-2BW mainly because no recomputation is
required, and outperforms GPipe and DAPPLE because of both
less bubbles and no recomputation. Using 512 nodes as the base-
line, Chimera achieves 91.4% parallel efficiency on 2,048 nodes in
weak scaling for GPT-2, which demonstrates the efficiency of the
communication scheme used in Chimera.

Note that we use the same model partition method as the default
setting in PipeDream-2BW, namely evenly partitioning the basic
layers among the workers. Other model partition methods trying
to balance the weights among the workers may help to reduce
the peak memory consumption of PipeDream-2BW, but this is
outside the scope of this paper. Generally, Chimera is on-par with
PipeDream-2BW (the latest asynchronous approach) in terms of
training throughput, but more convergence-friendly since there is
no stale weights in Chimera.
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Figure 16: Weak scaling for Bert-48 on the cluster with 32
V100 GPUs. As 𝑃 scales from 16 to 32, �̂� scales from 128 to
256, except for PipeDreamwhose �̂� scales from 16 to 32. The
max sequence length is set to 512.

We also conduct the evaluation on the cluster with 4x8=32 V100
GPUs connected by NVLink (intra-node) and Infiniband (inter-
node). Experimental results for Bert-48 are shown in Figure 16.
On 32 V100 GPUs, Chimera improves the throughput by 1.10x-
2.39x and 1.05x-1.89x over the synchronous and asynchronous
pipeline approaches, respectively, which demonstrates that the
same conclusions hold on newer machines.

4.3 Scale to Large Mini-Batches on a Given
Number of Machines

In this section, we evaluate the training throughput when there are
a large number of micro-batches available for each worker within a
training iteration (i.e., 𝑁 >> 𝐷), in which case the bubble problem
of all synchronous approaches is alleviated.
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Figure 17: Scale to large mini-batch size for Bert-48 on 32
GPU nodes of Piz Daint. 𝐷=8 for PipeDream, and 𝐷=4 for
the others.
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Figure 18: Scale to large mini-batch size for GPT-2 on
512 GPU nodes of Piz Daint. DAPPLE and PipeDream-2BW
switch from𝐷=16 to𝐷=8when �̂� >= 1,024,𝐷=8 for the others.

Figure 17 presents the throughput of Bert-48 on 32 GPU nodes
when scaling to large mini-batches. Different from the other ap-
proaches, PipeDream updates the model after training on each
micro-batch, and therefore its �̂� stops scaling after reaching the
memory limit. Consistently, we search the parameter space and
present the best performance for each baseline. For example, to
achieve the best performance, DAPPLE and GPipe switch from 𝐵=4
to 𝐵=8when �̂�>=1,024 for higher computational efficiency, in which
case the bubble problem is less important. PipeDream-2BW also
uses 𝐷=4, and the 𝐵 increase from 16 to 32 when �̂� >= 1024. Recall
that in Section 3.5 we discuss three methods for scaling Chimera
to large mini-batches. Forward doubling (with 𝐵=8) and backward
halving (with 𝐵=4) aim at solving the intermediate bubbles problem.
However, the former suffers from recomputation overhead while
the latter suffers from lower computational efficiency. Direct con-
catenation (with 𝐵=8) achieves the best performance among these
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three methods on Bert-48, which can be explained by the fact that
the intermediate bubbles caused by the uneven workloads between
forward and backward passes can be utilized to accommodate the
ptp communication between pipeline stages. For �̂�<=2,048 where
bubbles still matter, we observe significant improvement of Chimera
(direct) over all the synchronous approaches. Overall, for �̂�>=1,024,
Chimera (direct) is very close to PipeDream-2BW (asynchronous
using stale weights), and achieves on average 1.13x, 2.07x, and
1.06x speedup over GPipe (suffering from recomputation), GEMS
(suffering from high bubble ratio), and DAPPLE, respectively.

Figure 18 presents the throughput of GPT-2 on 512 GPU nodes
when scaling to large mini-batches. For GPT-2, Chimera (𝐷=8) with
forward doubling outperforms direct concatenation, since activa-
tion recomputation is required in both methods but the former
removes intermediate bubbles. Note that GPipe outperforms DAP-
PLE when scaling to large mini-batches in GPT-2, this is because
both approaches require recomputation but the pipeline scheduling
of GPipe is more regular and better to overlap the p2p communi-
cation. Benefiting from the sophisticated (less bubbles and more
communication overlap as discussed in Section 3.5) pipeline sched-
uling of Chimera with forward doubling, our approach outperforms
all the baselines, and achieves on average 1.13x, 1.18x, 2.60x, and
1.34x speedup over PipeDream-2BW, GPipe, GEMS, and DAPPLE,
respectively. These results demonstrate that Chimera with forward
doubling efficiently scales to large mini-batches for the large models
where activation recomputation is commonly required.

4.4 Chimera with More than Two Pipelines
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Figure 19: The throughput of Chimera with more pipelines
for a 32-layerGPT-2with �̂�=64 on 64GPUnodes of PizDaint.

Figure 19 presents the throughput of Chimera with more than
two pipelines (i.e., model replicas) combined together on a 32-layer
GPT-2 model. For the case of one pipeline, we use 1F1B scheduling
with pipeline flushing. With 𝐷=32, four pipelines achieve the best
performance because it hits the sweet spot of the trade-off between
less bubbles and higher allreduce overhead. However, as the pipeline
stages get coarser by decreasing 𝐷 to 16, four pipelines performs
worse then two pipelines because of the increasing of allreduce over-
head. Two pipelines (the default setting of Chimera) usually achieve
the highest performance among all the configurations. We expect
that Chimera with more than two pipelines would further improve
the performance on future deep models with deeper pipeline and
higher computation density on each stage.

5 CONCLUSION
Chimera brings new insights for efficiently pipelining large neu-
ral networks training at scale. Compared with the state-of-the-art
pipeline approaches, Chimera achieves the best balance among
pipeline efficiency, memory cost, and convergence friendliness. Em-
pirical results for large language models training on up to 2,048
GPU nodes show that Chimera significantly improves the training
throughput over the counterparts.We foresee that our approachwill
be one of the major solutions for massively scaling deep learning
training. To reduce the communication cost of gradient synchro-
nization by exploiting sparsification [22, 47] and quantization [1]
in deep learning training is our next step.
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A APPENDIX: ARTIFACT
DESCRIPTION/ARTIFACT EVALUATION

A.1 SUMMARY OF THE EXPERIMENTS
REPORTED

We evaluated Chimera on the CSCS Piz Daint supercomputer. Each
Cray XC50 compute node contains a 12-core Intel Xeon E5-2690
CPU with 64 GB RAM, and one NVIDIA Tesla P100 with 16 GB
memory. The compute nodes are connected by Cray Aries inter-
connect in a Dragonfly topology. We used GLOO in PyTorch as the
distributed backend. We utilized the GPU for acceleration in all the
experiments, as described in the paper. The source code of Chimera
is as follows:

Artifact name: Chimera
Persistent ID: https://github.com/Shigangli/Chimera

A.2 BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: CSCS Piz Daint supercomputer. Each
Cray XC50 compute node contains a 12-core Intel Xeon E5-2690
CPU and one NVIDIA Tesla P100 GPU. The filesystem is Lustre.

Operating systems and versions: SUSE SLES 11.3
Compilers and versions: gcc 9.3.0
Applications and versions: Bert, GPT-2
Libraries and versions: PyTorch 1.6
Key algorithms: stochastic gradient descent
Input datasets and versions:Wikipedia dataset,WikiText-2 dataset
URL to output from scripts that gathers execution environment

information.
https://www.dropbox.com/s/md1jlcn3sm5bl9x/environment.txt?

dl=0
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