
Code optimization for Cell/B.E.
Opportunities for ABINIT – a software package for physicists

EH I TCRA K T U R

Timo Schneider1, Simon Wunderlich1, Wolfgang Rehm1, Torsten Hoefler1,2, Heiko Schick3

1 Chemnitz University of Technology, Germany 2 Indiana University, USA 3 IBM Deutschland Entwicklung GmbH, Germany

{timos,siwu,rehm,htor}@informatik.tu-chemnitz.de, htor@cs.indiana.edu, schickhj@de.ibm.com

ABINIT on Cell - Overview

• The Cell/B.E. processor (aka “Cell”) developed by Sony, Toshiba and IBM is
a heterogenous multicore processor.
• This architecture offers a great peak performance for scientific computations
•We took some opportunities to optimize ABINIT for Cell and present first

results

ABINIT:
• A software package to compute the

total energy, charge density and elec-
tronic structure of systems made of
electrons and nuclei
• 240.000 lines of Fortran code
• Uses MPI for parallelization

Project Goals:
1. Run ABINIT on PPE of a single Cell
2. Make good use of the SPEs
3. Run ABINIT on a cluster of Cells
4. Evaluate how ABINIT could benefit

from a hybrid multiprocessor archi-
tecture

Profiling ABINIT promised that optimizing a few functions should lead to a serious
speedup of the whole application, in fact 4765 (2%) source lines of code (SLOC)
make up 87% of ABINIT runtime.

Function Runtime Task SLOC
ZGEMM 25% matrix multiplication 415
opernl4 35% applying the non local operator 1800
fftstp 15% fast fourier transformation 1450
mkffkg3 7% fast fourier transformation 580
pw orthon 5% Gram-Schmidt orthogonalization 520

We started by optimizing ZGEMM because the operation which is done by this
routine can be understood quite easily, so we could focus on optimization and
getting familiar with the Cell programming environment.

Math kernel optimization

Our BLAS3/ZGEMM implementation:
• Parallel multiplication of complex matrices with double precision
•Whole computation is done on the SPEs, PPE only administers SPE threads

ABINIT (PPE)

M e m o r y

ALLOCATE(A)
....

CALL ZGEMM(A..)

zgemm.o (PPE) SPE 0

copy parameters

start SPE Threads

wait for complet ion

SPE N

load part of A
do computat ion

write back

load part of A
do computat ion

write back
exist ing
imp lementa t ion

our contr ibut ion

• Divide the input matrices into blocks that fit into an SPEs local store
• The actual data partitioning scheme is less significant, the algorithm demands

much more multiplications than memory operations
• The innermost loop (where we multiply) must be optimal, so the dual issue

rate and number of pipeline stalls are important

cij =
∑

k

aik · bkj =
∑

k

(Re(aik) + i Arg(aik)) (Re(bkj) + i Arg(bkj))

=
∑

k

Re(aik) Re(bkj) + Re(aik) Arg(bkj)i + Arg(aik) Re(bkj)i− Arg(aik) Arg(bkj)

=
∑

k

[Re(aik) Re(bkj)− Arg(aik) Arg(bkj)] + [Re(aik) Arg(bkj) + Arg(aik) Re(bkj)] i

=

[
Re(aik) Re(bkj)−

(
Arg(aik) Arg(bkj)− Re

(∑
k−1

aik · bkj

))]
+[

Arg(aik) Re(bkj) + (Re(aik) Arg(bkj)) + Re

(∑
k−1

aik · bkj

)]
i

The last equation can be computed with only 4 fused multiply add (FMADD)
instructions, compared to 4 multiply and 2 add instructions in line 3.

The complex multiplication described above, implemented in C:

#def ine VPTR ” (v e c t o r doub l e ∗) ”
vector char h i g h doub l e = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 16 ,17 ,18 ,19 ,20 ,21 ,22 ,23} ;
vector char l ow doub l e = {8 , 9 ,10 ,11 ,12 ,13 ,14 ,15 , 24 ,25 ,26 ,27 ,28 ,29 ,30 ,31} ;
vector double r r e , r im , t r e , t im ;

fo r (k=0; k < k l e n ; k++, aa += astep , bb += bs tep) {
f im = s p u s h u f f l e (∗(VPTR aa) , ∗(VPTR (aa+a t s t e p)) , l ow doub l e) ;
gim = s p u s h u f f l e (∗(VPTR bb) , ∗(VPTR bb) , l ow doub l e) ;
f r e = s p u s h u f f l e (∗(VPTR aa) , ∗(VPTR (aa+a t s t e p)) , h i g h doub l e) ;
g r e = s p u s h u f f l e (∗(VPTR bb) , ∗(VPTR bb) , h i g h doub l e) ;
t r e = spu msub (f im , gim , r r e) ;
t im = spu madd (f r e , gim , r im) ;
r r e = spu msub (f r e , gre , t r e) ;
r im = spu madd (f im , gre , t im) ;

}
t r e = s p u s h u f f l e (r r e , r im , h i g h doub l e) ;
t im = s p u s h u f f l e (r r e , r im , l ow doub l e) ;

Benchmark results

Our ZGEMM implementation is 40
times faster for 2000x2000 sqare ma-
trices than the ZGEMM implementa-
tion in the refblas package

We achieve linear speedup with our
ZGEMM implementation, which is due
to the good memory/CPU coupling on
the Cell architecture

The Cell SDK 3.0 (pre-release)
achieves 9.5 GFlop/s DGEMMa per-
formance for a 2000x2000 matrix.
This corresponds to 68% of the Cell’s
peak performance. Our optimized
ZGEMM implementation is able to
leverage up to 73.5% of the peak
performance even though the com-
plex multiplication requires more shuf-
fle operations.

aThe current SDK does not offer a

ZGEMM implementation, thus we used

DGEMM for comparison.

The unmodified version of ABINIT is
roughly twice as fast on a 2 GHz
Opteron as on a Cell. If we manage
to optimize the other compute kernels
by the same factor as ZGEMM the
Cell version could be more than three
times faster on the Cell than on the
Opteron.b

To simplify the process of porting
math kernels to the Cell plattform
we are currently about to build tools
which help with optimizing the com-
piler generated (gcc -S) assembly,
similar to spu_timing but in a more
“active” way, which means that the
pipeline status should not only be
viewable but optimizations should be
suggested.

bWe simulated a test system in a 543 FFT

box with 108 atoms.

Future Work

• Optimization of the other ABINIT compute kernels for Cell
• Exploring ways to efficiently use heterogenous clusters for ABINIT

This research is supported by the Center for Advanced Studies (CAS) of the IBM Böblingen Laboratory as part of the NICOLL Project.

