
High Performance Unstructured SpMM
Computation Using Tensor Cores

Patrik Okanovic
ETH Zurich

Department of Computer Science
Zurich, Switzerland

patrik.okanovic@inf.ethz.ch

Maciej Besta
ETH Zurich

Department of Computer Science
Zurich, Switzerland

maciej.besta@inf.ethz.ch

Grzegorz Kwasniewski
ETH Zurich

Department of Computer Science
Zurich, Switzerland

gkwasnie@inf.ethz.ch

Flavio Vella
University of Trento

Trento, Italy
flavio.vella@unitn.it

Paolo Sylos Labini
Free University of Bozen-Bolzano

Faculty of Engineering
Bolzano, Italy

Paolo.SylosLabini@student.unibz.it

Torsten Hoefler
ETH Zurich

Department of Computer Science
Zurich, Switzerland

htor@inf.ethz.ch

Abstract—High-performance sparse matrix–matrix (SpMM)
multiplication is paramount for science and industry, as the ever-
increasing sizes of data prohibit using dense data structures.
Yet, existing hardware, such as Tensor Cores (TC), is ill-suited
for SpMM, as it imposes strict constraints on data structures
that cannot be met by unstructured sparsity found in many
applications. To address this, we introduce (S)parse (Ma)trix
Matrix (T)ensor Core-accelerated (SMaT): a novel SpMM library
that utilizes TCs for unstructured sparse matrices. Our block-
sparse library leverages the low-level CUDA MMA (matrix-
matrix-accumulate) API, maximizing the performance offered by
modern GPUs. Algorithmic optimizations such as sparse matrix
permutation, further improve performance by minimizing the
number of non-zero blocks. The evaluation on NVIDIA A100
shows that SMaT outperforms SotA libraries (DASP, cuSPARSE,
and Magicube) by up to 125x (on average 2.6x). SMaT can be
used to accelerate many workloads in scientific computing, large
model training, inference, and others.

Index Terms—Mathematics of computing, SpMM, Matrix
Multiplication, Tensor Cores

I. INTRODUCTION

The performance of dense matrix multiplication has steadily
improved in recent years, with new architectures and libraries
feeding the growing computational needs of deep learning.
MMA units such as the Tensor Processing Unit (TPU) [1] and
the Tensor Core (TC) [2] are designed to efficiently handle
big volumes of multiply-accumulate operations, a fundamental
workload in scientific computing. However, the performance
of multiplying a sparse matrix with a dense one (SpMM),
which is not only crucial for important High-Performance
workloads [3] or graph and data analytics [4]–[8] but also
constitutes a growing part of many modern workloads—most
notably, Graph Neural Networks (GNNs) [9]–[13] and general
Sparse Deep Learning [14], [15], is far from reaching hardware
peak performance.

It is still unclear how to leverage the hardware (HW) and
software (SW) machinery developed for dense matrix com-
putations in applications operating on sparse matrices. Thus,

the computational power of dense matrix units, which are
common in most high-performance hardware configurations,
still remains untapped. Thanks to the efficient use of memory
hierarchies and matrix units, explicitly storing zeros and using
dense representation can be faster than computations on sparse
data structures, even on very sparse matrices. For example,
on the NVIDIA HW/SW stack, the sparsity threshold for
the supremacy of dense multiplication (cuBLAS) over sparse
SpMM (cuSPARSE) lays as high as 99.9% [16], depending
on the size of the matrix and its sparsity pattern. Multiplying
sparse matrices as if they were dense, however, is inherently
inefficient due to padding—explicitly stored zeros. As the
size and sparsity of the matrices grow, padding increases the
storage requirements and data movement costs compared to
sparse storage, relegating these powerful routines to small
matrices. Most importantly, padding reduces the utilization of
matrix units, wastefully processing null elements.

A natural approach to reduce padding and increase the
utilization of matrix units, and thus to make the SpMM based
on dense matrix units faster and more memory-efficient, is
blocking—tiling a sparse matrix into blocks, and only storing
and processing the nonzero ones [17]. Blocking enables parti-
tioning a sparse matrix into a collection of dense matrices—the
nonzero blocks—which can then be multiplied using dense
units. However, two main challenges make reaching peak
hardware performance of blocked-sparse matrix multiplication
still an open problem: a) block density: finding the optimal
blocking that minimizes the amount of padding - the number
of explicit zeros per each dense block that increase memory
footprint and account for wasted arithmetic operations; and
b) hardware-aware implementation: efficient streaming of
consecutive blocks to fully utilize memory pipelines, hiding
the load latency and saturating all TC units.§

While the problem of efficient utilization of MMA units for
sparse matrices was addressed in previous research, existing
work mostly focus on narrow use-cases. Magicube [18] is

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00060&domain=pdf&date_stamp=2024-11-17

Execution (Section IV.D)

Preprocessing (Section IV.C)

Sparse matrix Input CSR format

d e

w x
s t u v

f g h
i j k l

p q r
m n o

b ca

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 3 5 8

6 7 0 1 2 3 4

b c d e f g h

rowPtr

col

val

…

…

…

𝐴 BCSR (block size 2x2)

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

d e

w x
s t u v

f g h
i j k l

p q r
m n o

a b c0 0
0 0 0 0

0 0
0 00 0

0 0

0 0
0 0

0 0
0 0 0 0

0

0

0
0

0 3 7 10

0 4 6 0 2 4 6 0

0 0 d e 0 a 0 0

rowPtr

col

val

…

13

b c 0 0

blocks:
13

zeros
stored:

28

Row permutation A’ = PA

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7

0 1 3 5

0 4 6 0 2 4 6 0

d e w x s t f g

rowPtr

col

val

…

7

u v h 0

blocks: 7
zeros stored:

4
improvement:

13/7 = 1.85

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c

d e
w x

s t u v
f g h 0

i j k l
p q 0 r

m n 0 o
0 a b c𝐴

𝐵

𝐶

𝐶 = 𝐴𝐵
“bottom-up” 2D parallel

Each TC tile of C is
assigned to a

different warp

E.g.: executed
by warp #6

m n 0 o
0 a b c

Per-warp sequential
schedule (warp 6)

Warp-level empty
tiles skipped (B)

First blocks are processed

Next
blocks

are async.
loaded
double-

buffering
(C)

Using tensor
cores for each

MMA (T)

Creating
BCSR

format
7
0
3
4
6
5
2
1

P

O
p

ti
m

iz
at

io
n

s

R
e

sh
u

ff
lin

g

Results (Section VI)

SuiteSparse synthetic

Custom CUDA kernel

Setup:
- 9 matrices from SuiteSparse
- nnz from 766K to 10M
- Various non-zero distributions

bandwidth b

a

5

Input (Section II.B)

Representative matrices from SuiteSparse, Section VI, Figure 8

Faster than
cuBLAS for

sparsity 78%

Only 2.3x slower
than cuBLAS

At MINIMUM 7x
faster than second

best (DASP)

1724x times
faster than
cuSPARSE

SMaT

A100 hardware peak

% sparsity in a synthetic band matrix, Section VI, Figure 9

7.34x faster than the second-
best (DASP)

125x faster than
cuSPARSE

MEASURED PERORMANCE IN GFLOP/S

R
u

n
n

in
g

o
n

 A
1

0
0

Setup:
- Load balanced
- Non-zero blocks are dense
- No reordering needed
- Test internal data structure

Fig. 1: A bird’s-eye view of the entire SMaT’s pipeline. SMaT performs SpMM on an input matrix in the CSR format stored
in any precision supported by Tensor Cores. Then, it preprocesses the matrix to maximize the block density, minimize the
total number of blocks, and maximize the load balance between rows. The preprocessing is done only once and the matrix
is internally stored in the BCSR (Blocked-CSR) format. When the SpMM kernel is launched, an optimized CUDA kernel
uses block-level bottom-up 2D parallelism to maximize the utilization of GPU hardware resources. The results - both on the
SuiteSparse and on synthetic matrices confirm the universality of SMaT: it significantly outperforms remaining solutions in
almost every test case: for very sparse and relatively dense matrices, for highly unstructured and for very regular matrices.

an SpMM library specifically designed for deep learning,
requiring structured sparsity and supports only low-precision
integers. DASP [19] supports only SpMV operation, which can
be viewed as a special case of SpMM, with the dense matrix
containing only a single column. NVIDIA’s general-purpose
cuSPARSE library [20] relies on a CSR format, but exper-
iments show that it underperforms in many scenarios [18],
[19], [21]. cuSPARSELt and VENOM [22] work only on fixed
sparsity patterns.

In this work, we introduce SMaT — (S)parse (Ma)trix
Matrix (T)ensor Core-accelerated library. It is a general-
purpose SpMM library that works on unstructured sparse
matrices in CSR format - arguably the most prevalent format
for this purpose. It works with all data types supported by the
MMA hardware units. The library first does the preprocessing
permutation of the sparse matrix to minimize the number of
dense blocks. Then, our highly-optimized low-level CUDA
implementation efficiently streams thread-level blocks, over-
lapping computation with data movement and saturating all
hardware TC units using bottom-up [23] 2D parallelism.

SMaT, while being a general-purpose library, significantly
outperforms both vendor-optimized cuSPARSE, as well as use-
case-specific SotA solutions like Magicube and DASP. We

compare against the DASP SpMV library by treating SpMM as
a batched SpMV and we show that SMaT outperforms DASP
for batch size as small as 4. Our empirical performance model
(Section III) outlines our driving design choices: hardware-
aware, data-movement-centric code design can bring more
performance to contemporary GPU architectures than even
sophisticated preprocessing algorithms aimed to reduce the
number of blocks.

Experiments on synthetic matrices show up to 2,445 times
improvement over cuSPARSE, with at least a minimum of
5.3x improvement compared to the second-best library (Sec-
tion VI-C). Furthermore, we compared the performance of
SMaT against cuBLAS: a vendor-optimized GEMM library
for dense matrices, and show that contrary to previous find-
ings [16] we outperform cuBLAS for sparsity regimes as
low as 78%. Evaluated on the real-world matrices from
cuSPARSE, we measure up to 8.6× performance improve-
ment (on average 4.8×). The high-level design together with
representative results are presented in Figure 1.

To summarize, we provide the following contributions:
• SMaT: an end-to-end solution for general-purpose SpMM

that supports unstructured sparsity and all data types
supported by the TC units,

• A sparse matrix preprocessing permutation scheme that
decreases the number of dense blocks by up to 2.5x,

• A high-performance implementation of the blocked-CSR
(BCSR) SpMM on Tensor Cores using the low-level
CUDA MMA API,

• An empirical performance model for SpMV in BCSR
format that quantifies both the impact of preprocessing
and the implementation optimizations,

• An evaluation demonstrating speedups of up to 125x over
cuSPARSE and up to 7.3x over second-best among tested
state-of-the-art SpMM routines: cuSPARSE, Magicube,
and DASP.

II. BACKGROUND

Throughout the paper, we consider a matrix-matrix mul-
tiplication C = AB with C ∈ FM×N , A ∈ FM×K , and
B ∈ FK×N , for some ring F. Furthermore, we assume matrix
A to be sparse: denoting the number of non-zero elements in
A as nnz, we have 1−nnz/(M ·K) = Ω(1). Matrix B, of size
K ×N , is dense. The SpMV operator (sparse Matrix-Vector
multiplication) can be seen as a special case with N = 1.

We first introduce fundamental concepts.

A. Hardware execution model

1) Execution model: The execution model leverages a
hierarchy that includes threads, warps, and thread blocks. A
thread is the smallest unit of execution. A warp is group of
threads that are executed simultaneously by the GPU. The size
of a warp is specific to the GPU architecture, with 32 being a
common size in NVIDIA GPUs. Warps execute independently
but can share data with other warps in the same thread block
using shared memory. They have their own set of private
registers and can be synchronized within their block.

2) Tensor Cores: Tensor Cores (TCs) are specialized pro-
cessing units found in most modern NVIDIA GPUs. These
cores are optimized for performing mixed-precision matrix
multiply-and-accumulate operations very efficiently, which
are fundamental to the training and inference. TCs perform
matrix operations where inputs are typically in lower precision
formats (like FP16, BF16, or INT8), but accumulate results in
a higher precision format (like FP32) to maintain the precision
of the computations. A typical operation performed by a TC
involves multiplying two small matrices and adding the result
to a third matrix, i.e., Fused Multiply-Add (FMA).

When a CUDA kernel that leverages TCs is executed,
the warp scheduler on the GPU is responsible for directing
warps to utilize these cores efficiently. The warp scheduler
must manage the distribution of matrix operations across the
available TCs, ensuring that the workload is evenly distributed
and that TCs are kept busy to maximize throughput.

3) Memory model: The CUDA memory model provides a
hierarchy of memory options for optimizing performance in
NVIDIA GPUs. While this hierarchy is common across GPU
generations [24], we provide the parameters for the A100-
SXM4-40GB architecture [2], as this is our primary target in
the Evaluation (Section V).

• Global memory: large shared space accessible by all
threads, yet slower compared to other memory types.
40GB HBM2, bandwidth 1.5TB/s.

• Shared memory: smaller but significantly faster memory
shared by threads within a block, making it suitable for
data that requires frequent access by cooperating threads.
Configurable, up to 164KB per SM, 32 banks with
bandwidth 64b per clock cycle.

• Registers: smallest and fastest memory units, private to
each thread, ideal for storing frequently used variables
within a single thread. 256KB per SM.

In order to utilize TCs, data needs to be strategically moved
from global memory to registers. To avoid bank conflicts and
efficiently overlap computation with data movement, memory
alignment and software pipelining play an important role
by hiding data movement latency. Further details on the
implementation can be found in Section IV-D.

B. Sparse matrix representation

1) Unstructured sparsity: Without any information about
the topological structure of nonzeros, each individual element
has to contain information not only about its value but
also about its location, yielding Ω(nnz) additional memory
overhead. CSR (Compressed Sparse Row), CSC (Compressed
Sparse Column), and CO (Coordinate) are arguably the most
common formats for storing unstructured sparsity, with the
first being dominant. Despite the memory overhead for storing
locations, they tend to have the smallest memory footprint, as
no zero values are stored. That comes at the cost of latency
(each value’s location has to be individually decoded), load
balance, and cache utilization.

2) Structured sparsity: Structured sparsity has recently
gained significant attention due to its applications in deep
learning and the introduction of Sparse Tensor Cores (SPTC)
in NVIDIA’s Ampere architecture. However, SPTCs only
support the 2:4 format, which limits achievable sparsity ratios
to 50%. This format requires every consecutive 4 elements
to have 2 nonzero values, promising a 2× speedup. Castro et
al. extended the algorithmic support for M:N sparsity [22]
— among every N consecutive values, M are non-zeros.
Low-rank decomposition [25] can be viewed as the lossy
compression format, where a large matrix is represented as a
product of lower-rank matrices. Its primary advantage is that
the multiplicand matrices are usually dense and naturally fit
for dense GEMM-optimized libraries and hardware.

In general, the performance of structured sparse matrices
is higher due to lower position decoding overhead, streamed
and vectorizable access patterns, and hardware support. How-
ever, in many applications, such as analysis of real-world
graphs [10], higher-order patterns can be prohibitively expen-
sive to discover or may be even non-existent [26].

3) Blocked format: While the unstructured format ad-
dresses each individual value in the matrix, the blocked format
addresses the block granularity: submatrices of fixed size
h × w [27]. Each block is assumed to be dense, that is, all
h · w values are stored explicitly, even if some of them are

zeros. While each block can, in principle, start at any row and
column offset, in this work, we assume a fixed block structure:
each block offset (the row and column index of the top left
value of the block) is a multiple of h or w, respectively. Given
a matrix A ∈ Fn×m with n rows and m columns, and given
the rectangular block sizes h and w, we identify A with its
blocked version A (omitting the dependency on h and w).
Specifically, A is an N ×M block matrix, where N = ⌈nh⌉
and M = ⌈mw ⌉. Each of its elements Ai,j is a block in Fh×w,
containing all entries Ak,l s.t. ⌊ kh⌋ = i and ⌊ l

w ⌋ = j.
Once a matrix has been blocked, it can be stored and

processed in a blocked storage format, where only nonzero
blocks (those with at least one nonzero) are stored explicitly.
We refer to zero entries within a nonzero block as padding.

Storing and processing padding elements is one of the two
main costs of blocked SpMM, the other being accessing the
nonzero blocks themselves. The former grows with the size of
the blocks, while the latter grows with their number. On the
one hand of this trade-off lay purely sparse storage formats,
such as the established Compressed Sparse Rows (CSR),
which only store nonzero elements but need to access each
one separately. On the other hand stand fully dense storage
schemes, which store all zeros and nonzeros in one large block.
Block storage formats, such as those considered in this paper,
carefully balance between these two extremes.

III. PERFORMANCE MODEL

𝑁 = 8

𝜇
𝑠

10

100

1,000

, , , , , ,

naive B: BCSR schedule optimization
Up to 2x improvement vs naive

T: TC API calls
Up to 12x improvement vs naive

BT: BCSR and TC API calls
Up to 20x improvement vs naive

CBT: B, T and Cooperative shared memory loads
Up to 22x improvement vs naive

model
measurements×

Fig. 2: Performance measurements vs. model (Equation 1)
for various combinations of low-level optimizations: C: warp-
cooperative asynchronous loading from global to shared mem-
ory using memcpy async; B: using BCSR pointer array to skip
empty-block evaluation in the inner loop; T: using TC MMA
API (MMA16816)

We use a linear performance model

Ttot = Te · ne + Tinit, (1)

where Ttot is the total runtime of the kernel, Te is the
execution time of a single compute instruction, ne is the
number of elementary computations, and Tinit accounts for

any startup, initialization, cache warm-up, and finalization
overhead. Depending on the implementation, this compute
instruction may be, e.g., a single scalar FMA (fused multiply-
add), a vectorized operation (e.g., using AVX), or a Tensor
Core MMA instruction.

We validate our model and fit the parameters on a 16k×16k
band matrix with varying bandwidth (from 64 to 4096) times
a tall-and-skinny dense matrix of size 16k × 8. We note that
such a scenario does not reflect typical real-world sparse
matrices, yet we want to isolate any effects of imperfect
load balancing, non-zero distribution, or varying block fill-
ins. In this synthetic benchmark, our model matches the
measurements well (Figure 2).

This model captures two crucial aspects of high-
performance SpMM and their equal contribution: low-level
implementation Te and high-level algorithmic optimization ne.

A. Single instruction time Te

SMaT fully utilizes TC: thus, depending on the used preci-
sion, we treat a single MMA instruction as an elementary com-
putation (e.g., for FP16, we use 16x8x16 MMA). Optimizing
MMM in CUDA requires multiple stages of careful optimiza-
tions [28] — Figure 2 shows the impact of three representative
steps. In Section IV-D, we discuss these optimization in detail.

B. Number of elementary computations ne

The number of elementary computations ne is the number
of dense blocks in the BCSR format (Section II-B3). As
mentioned in Section III-A, the size of the block h×w depends
on the used precision. For a sparse matrix of size N × M
holding nnz ≤ N ·M nonzero values, it can be seen that ne

is bounded by

nnz

h · w
≤ ne ≤ min

(N ·M
h · w

, nnz
)

(2)

The lower bound is achieved when all blocks are fully
packed and there is no zero fill-in. The upper bound represents
the case where there is only a single non-zero per entire block,
and the remaining h · w − 1 elements are explicitly stored
zeros. Section IV-C discusses how SMaT reduces the number
of blocks ne by matrix reordering via clustering rows and
columns based on the similarity metrics.

Observation: We argue that low-level kernel optimiza-
tions can play a more important role than even an optimal
preprocessing algorithm. While experimenting with different
reshuffling algorithms we rarely observed a reduction in the
total number of blocks greater than 3 times. On the other hand,
just using the TC API increases performance by 10 times, with
our optimized kernel outperforming a naive implementation 22
times (Figure 2).

IV. SMAT— (S)PARSE (MA)TRIX MATRIX (T)ENSOR
CORE-ACCELERATED LIBRARY

In this section we describe SMaT — a novel SpMM library
designed to utilize TCs for unstructured sparse matrices.

A. Overview

Figure 1 displays the overview of SMaT. Initially, the sparse
matrix A is read in the CSR format. Internally, the matrix is
converted to the block format. Afterwards, in the preprocessing
phase, the matrix is reshuffled to minimize the number of non-
zero blocks with row permutations A’ = PA. The permuted
matrix is stored and passed to the execution phase, where our
custom CUDA kernel performs the matrix multiplication.

B. Data Structures

Our implementation leverages the widely used blocked
format for sparse matrices, BCSR. In Figure 1, we provide
an example of the BCSR format, which consists of three
arrays. Similarly to CSR, the BCSR array rowPtr stores the
offset pointers in the col array for each block row, and col
holds the column index for each block. Since the blocks are
stored as dense, every h · w consecutive values in array val
represent one block, which may require filling some values
with zeros (Figure 1, top left). Matrices stored in this format
can directly be used as input for the MMA Units since the
block dimensions h and w of BCSR match the dimensions
of the MMA API calls. This, in turn, depends on the used
precision: e.g., for FP16, we use the block size 16 × 8,
corresponding to the M16N8K16 instruction (Listing 1).

It is worth noting that both DASP and cuSPARSE use the
CSR format, while Magicube uses a Strided Row-major BCRS
(SR-BCRS) format. The dense vectors in SR-BCRS are stored
in a stride-wise row-major manner. If the number of dense
vectors in the row is not a multiple-of-stride, zero vectors are
padded for the last stride.

C. Preprocessing

While finding the optimal block-minimizing permutation
is NP-hard, various heuristics exist. We tested various state-
of-the-art reordering schemes that cluster the non-zero val-
ues together to minimize the number of blocks. Reverse
Cuthill–McKee [29] minimizes the matrix bandwidth. Saad’s
algorithm [30] uses a similarity metric for clustering similar
rows to increase the spatial locality. Çatalyürek et al. [31]
uses hypergraph partitioning techniques to minimize the cut
between the rows. Zhao et al. [32] uses the Gray code ordering
to maximize data locality. Sylos Labini et al. [33] use Jaccard’s
similarity metric to determine the blocking. In our tests, Sylos
Labini’s algorithm provided the best reduction in the block
count. Thus, we use this as our baseline preprocessing routine.

Sylos Labini’s algorithm reduces the padding with zeros by
clustering similar rows together. Intuitively, similar rows have
many zero and nonzero values in the same columns. In order to
measure the similarity of two rows v, w they use the Jaccard
distance J(v, w) = 1 − |v∩w|

|v∪w| , which measures the ratio of
padding to the total cluster area. Their algorithm iteratively
performs the following greedy procedure: create a new cluster
c and choose an unclustered row v; for all other unclustered
rows w check whether the Jaccard distance dist(w, pc) is less
than a threshold distance (pc represents the union of rows in
cluster c); merge all rows for which the distance is less than

the threshold. This procedure is repeated until all rows belong
to some cluster.

While Sylos Labini’s algorithm performs only row per-
mutation to avoid reshuffling the right-hand-size matrix B,
we tested the impact of both row and column reordering
to maximize the block reduction ratio. We note that while
row permutation comes with a minimal cost (the entire com-
putation schedule is similar up to the permutation of the
result matrix), permuting columns causes the overhead of
accessing B, so any reduction in the number of blocks must
be large enough to compensate for this. Our experiments
(Section VI-A) show that performing additional column per-
mutation does not provide sufficient benefits. Therefore, in
our implementation, SMaT performs row-only permutation as
a block-densification preprocessing step.

It is worth noting, that in some special cases, such as band
matrices, the sparse matrix is already structured to minimize
the number of non-zero blocks. In this case, the permutation
P becomes the identity matrix, and the sparsity pattern of the
permuted matrix A’ is the same as for the input matrix A.

D. Implementation

Algorithm 1 Pseudocode of the warp-level SMaT kernel

Require: valuesBcsr, rowPtrBcsr, colIdxBcsR,B,C
1: for laneid = 0 to 31 in parallel do
2: RC ← 0
3: for blocks in bcsrV als[row] do
4: RD ← RC
5: MEMCPY ASYNC(A shared, bcsrV als[idxA])
6: MEMCPY ASYNC(B shared, B[idxB])
7: LDMATRIX X4(RA, A shared)
8: LDMATRIX X2(RB, B shared)
9: HMMA16816(RD, RA, RB, RC)

10: C shared← RC
11: C[idxC + laneid]← C shared

1 #define HMMA16816(RD0 , RD1 , RA0 , RA1 , RA2 , RA3 ,\
2 RB0 , RB1 , RC0 , RC1) \
3 asm volatile("mma.sync.aligned.m16n8k16.row.col.\
4 f16.f16.f16.f16 \
5 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%8, %9};\n" \
6 : "=r"(RD0), "=r"(RD1) \
7 : "r"(RA0), "r"(RA1), "r"(RA2), "r"(RA3), \
8 "r"(RB0), "r"(RB1), "r"(RC0), "r"(RC1))

Listing 1: mma.m16n8k16 Tensor Core instruction in FP16

1 #define LDMATRIX_X2(R0, R1, addr) \
2 asm volatile("ldmatrix.sync.aligned.x2.m8n8.shared.b16 \
3 {%0, %1}, [%2];\n" : "=r"(R0), "=r"(R1) : "r"(addr))

Listing 2: LDMATRIX X2

1 #define LDMATRIX_X4(R0, R1, R2, R3, addr) \
2 asm volatile("ldmatrix.sync.aligned.x4.m8n8.shared.b16 \
3 {%0, %1, %2, %3}, [%4];\n" \
4 : "=r"(R0), "=r"(R1), "=r"(R2), "=r"(R3) \
5 : "r"(addr))

Listing 3: LDMATRIX X4

We now describe selected most important optimization steps
employed in our library. These steps are illustrated in Figure 2.
Full code is publicly available on GitHub1.
T: TC API We execute in half precision mma.m16n8k16 op-
eration. Listing 1 shows the PTX code example we incorporate
in our implementation for using TCs.
B: BCSR iteration We use arrays rowPtr and colIdx from
Figure 1 in order to iterate only over non-zero blocks. Without
these data structures, one needs to iterate over every block
and check whether that block is non-zero. More details can be
found in Algorithm 1 and Section IV-B.
C: collective loads cuda::memcpy async achieves overlap-
ping computation with data movement, allowing for faster
transfer of data from global memory to registers. Section IV-E
contains additional information.
Algorithm 1 presents the pseudocode for the CUDA kernel
of SMaT. Each warp is responsible for the calculation of a
submatrix of matrix C such that the dimensions correspond
to the dimensions of the TC. As the dense matrix B has
dimension N << K, most of its width of B is loaded in
the memory. Afterwards, non-zero blocks using the BCSR
format are loaded from the global memory into registers in
an efficient way. For that, we use cuda:memcpy:async for
loading into shared memory, and the PTX command ldmatrix
shown in Listing 2 and 3 for loading into registers in the
required format. Then the execution of the TCs is called with
the command HMMA16816. Finally, the result stored in the
registers is transferred back into global memory.

E. Asynchronous Data Loads

In order to hide the latency of transferring data from
the global GPU memory to shared memory we utilize
cuda::memcpy async. These asynchronicity features enable
overlapping computations with data movement, reducing total
execution time. The cudaMemcpyAsync function allows data
movement between CPU memory and GPU global mem-
ory to be overlapped with kernel execution. Similarly, the
cuda::memcpy async function allows data movement from
GPU global memory to shared memory to be overlapped with
thread execution. It is important to note that copying data from
global to shared memory without cuda::memcpy async is a
two-step process. The process of copying data from global
memory into registers and then from registers into shared
memory is performed in multiple stages through the memory
hierarchy. To avoid this, cuda::memcpy async can be used to
directly transfer data from global memory to shared memory
using DMA engines without involving registers. This frees up

1https://github.com/spcl/smat

the thread block from the task of moving data and allows
registers to be used for computations.

V. EVALUATION

We note that, to the best of our knowledge, there is no
high-performance library for unstructured SpMM using tensor
cores that would simultaneously work on real-world, highly
sparse (>90%), and irregular matrices while utilizing Tensor
Cores efficiently. Existing solutions tend to either focus on
the former (highly sparse unstructured matrices in the CSR
format [20]) or the latter (utilizing TC for relatively dense,
small, structured matrices in very low precision commonly
found in Machine Learning (ML) [18], [19], [22], [34]). We
compare SMaT’s performance against existing solutions that
can be employed in such a scenario, exposing their weaknesses
on a large set of both real-world and synthetic matrices of
varying size, structure, and sparsity. Furthermore, we showcase
the effectiveness of the preprocessing permutation of sparse
matrices.

We also test different solutions for our preprocessing step
to minimize the number of blocks. Our experiments show, that
Sylos Labini’s algorithm (Section IV-C) performs the best for
our test matrices. We evaluate two variants: the original version
proposed by the authors that permutes only the rows, and our
experiment on both row and column permutation.

A. Comparison Targets

As comparison targets, we use Magicube, which is a high-
performance sparse-matrix library for low-precision integers
on Tensor cores optimized for ML scenarios. For a fair
comparison, we evaluate the Magicube2 mixed precision int16
since the throughput is equal to fp16 on TC. Although DASP3

focuses on SpMV, we consider it as a batched vector algorithm
by iteratively performing SpMV — for this reason, we focus
mostly on tall-and-skinny dense matrices. Finally, we compare
against a cuSPARSE implementation of SpMM using the CSR
format4.

B. Hardware Infrastructure

We run our experiments on the Swiss National Computing
Center’s Ault compute cluster. Each node is equipped with
a single NVIDIA A100-SXM4-40GB GPU, and AMD EPYC
7742 @ 2.25GHz CPU. The A100 driver version is 530.30.02.

C. Software Stack

All experiments were executed using the GCC 12.3.0
compiler, NVIDIA nvcc v12.0, NVIDIA cuSPARSE v12.0,
NVIDIA CUDA Toolkit v12.0, Python 3.9, and the follow-
ing Python libraries: Pandas, Matplotlib, Numpy, Scipy, and
Seaborn.

2https://github.com/Shigangli/Magicube
3https://github.com/SuperScientificSoftwareLaboratory/DASP
4https://github.com/NVIDIA/CUDALibrarySamples/blob/master/

cuSPARSE

https://github.com/spcl/smat
https://github.com/Shigangli/Magicube
https://github.com/SuperScientificSoftwareLaboratory/DASP
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuSPARSE
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuSPARSE

Domain Name Size nnz Sparsity
optimization mip1 66K×66K 10.4M 99.76%
quantum chem. conf5 4-8x8 49K×49K 1.9M 99.92%
2D/3D mesh cant 62K×62K 4M 99.89%
weighted graph pdb1HYS 36K×36K 4.3M 99.67%
fluid dynamics rma10 46.8K×46.8K 2.3M 99.89%
2D/3D mesh cop20k A 121K×121K 2.6M 99.98%
2D/3D mesh consph 83K×83K 6M 99.91%
structural shipsec1 140K×140K 7.8M 99.96%
circuit simulation dc2 116K×116K 766K 99.99%

TABLE I: Selected matrices from the SuiteSparse

D. Tested Scenarios
As mentioned in Section V-A, neither DASP nor Magicube

are optimized for large SpMM. Magicube, which is optimized
for relatively small matrices found in ML, has a large memory
footprint. This significantly limits the number of matrices we
can run all libraries on. We consider two different origins of
matrices:

• SuiteSparse Collection [35]: to make a fair comparison
against DASP, we use the same representative set of
matrices as used by Lu et al. [19]. These matrices come
from 7 application domains, and are considered a broad
representation of different types of sparse matrices. Out
of 21 matrices used by DASP, Magicube can support only
9 of them (Table I).

• Synthetic band matrices: we generate a series of
band matrices of variable bandwidth, scaling their
sparsity from 99.7% all the way to dense matri-
ces (0% sparsity), These matrices serve as the em-
pirical evidence for the claims made in Section III.
Motivation: Testing general-purpose unstructured Sp-
MV/SpMM routines on highly regular matrices is com-
mon among the HPC benchmarks. HPCG [36] – one of
the main benchmarks to rank supercomputers – tests this
scenario: high performance SpMV on a matrix originating
from a 3D grid computation.

E. Methodology
We first execute a warm-up run for all the experiments to

obtain reliable measurements of the execution time on the
GPU. Afterward, for each method, we run the kernel call
10 times and report the arithmetic mean. We observe that
the variance in time measurements is very low: across all
experiments, the Coefficient of Variation CV = σ/µ = 0.0182
(geometric mean across all the runs). For example, SMaT
wallclock time on cop20k A is 0.125ms, and the variance
is 1ns. Therefore, when plotting the measurements, we do not
include the confidence intervals nor the standard deviation,
as it would be unreadably small and would only clutter the
display.

VI. RESULTS

A. Preprocessing reordering
We start by analyzing the impact of reordering matrices on

computation time for representative matrices from the SuiteS-
parse Collection. Figure 4 demonstrates the importance of

reordering for SMaT. As the performance positively correlates
to the number of blocks in the reordering, this confirms the
performance model introduced in Section III. We observe
that some input matrices are already well-structured: e.g.,
conf5 4-8x8, which originates from the quantum chemistry
simulations, is a sparse band matrix – the locality of inter-
actions between particles put all nonzeros relatively close to
the diagonal. In this case, the Jaccard’s similarity metric used
by our preprocessor incorrectly reshuffles the rows, increasing
the number of blocks. We evaluate the same setting for DASP
(Figure 5), cuSPARSE (Figure 7), and Magicube (Figure 6). In
general, the reordering decreased the number of BCSR blocks
in 6 our of 9 matrices, with the block count reduction ranging
from 1.3× (cant) up to 2.4× (cop20k A). This significantly
translates to the final performance solution, as discussed in
Section VI-B, confirming the importance of this preprocessing
step. The distribution of the number of blocks per row in
BCSR for the input matrices, after the row permutation, and
after row and column permutation for all tested matrices can
be found in Figure 3.

B. SuiteSparse

As stated in Section V-D, we measure the performance
in GFLOP/s on 9 matrices with the non-zero count ranging
from 766k to 10.4M and the number or rows ranging from
M = 36k to M = 140k. While SMaT supports much bigger
matrices as well, Magicube is designed to optimize ML work-
loads, which host much smaller matrices. In our experiments
Magicube’s internal preprocessing and representation runs out
of memory for larger matrices from SuiteSparse. Therefore,
we include only matrices that are supported by all comparison
targets. Furthermore, since we are using batched SpMV to
simulate SpMM for DASP, we keep the batch dimension small
(N = 8): large values of N would make a batched-SpMV
less competitive compared to the direct SpMM routines, as
discussed in Section VI-D.

The dimensions and number of non-zero elements of the
benchmark matrices are shown in Table I. Across 9 matrices
SMaT is better on average 7.71× (geometric mean) than
the respective baselines. Compared to baselines SMaT is:
2.60× faster (up to 7.34×) than DASP, 10.78× faster (up to
51.23×) than Magciube, 16.32× faster (up to 125.48×) than
cuSPARSE. The results are presented in Figure 8.
Best case scenario. SMaT has the largest performance im-
provement compared to baselines on the mip1 matrix. This
use-case emphasizes the importance of good preprocessing
that simultaneously minimizes the number of blocks and
the row load-imbalance. As discussed in Section IV-C, our
preprocessing routine is especially effective for mip1, reducing
the total number of blocks by 1.8 times, but more importantly,
the standard deviation of block count per row from 146.2 to
17.4. This improves the load balance by 8.4 times (Figure 3),
which is crucial for an efficient parallel schedule. Interestingly,
other libraries seem not to be able to take full advantage of
this property (Figures 5, 6, 7). Since they also employ their
internal preprocessing algorithms, we expect that in this use-

LOG SCALELINEAR SCALE

original row + columnrow

2.5x fewer blocks
3x smaller standard deviation

1.8x fewer blocks
8.4x smaller standard deviation

99.994% sparsity
Coefficient of variation: 10.9

Fig. 3: Distribution of the blocks count per row in the BCSR format in the input matrix (original), after the row reordering,
and after row and column reordering for the test matrices. For cop20k A, row reordering reduces the number of BCSR blocks
by 2.5x and the standard deviation by 3x. For mip1, while the reduction of the total block count is slightly smaller (1.8x), the
standard deviation is reduced by 8.4x, significantly improving the load balance for our 2D parallel schedule. Matrix dc2 is
the most adversarial for SMaT: with its extreme sparsity and power-law distribution of nonzeros per row, the runtime cannot
utilize tensor cores, and the warp-level static schedule generates high load imbalance on SMs.

Fig. 4: Reordering effect on the performance of SMaT on 9
representative matrices from SuiteSparse.

Fig. 5: Reordering effect on the performance of DASP on 9
representative matrices from SuiteSparse.

case their preprocessor actually increases the load imbalance.
However, a detailed analysis of this aspect is out of scope of
this work.
Worst case scenario. We observe that SMaT does not always

Fig. 6: Reordering effect on the performance of Magicube on
9 representative matrices from SuiteSparse.

Fig. 7: Reordering effect on the performance of cuSPARSE
on 9 representative matrices from SuiteSparse.

perform the best. dc2 is the sparsest among tested matrices
(sparsity 99.994%) with a very high row imbalance: the
standard deviation of the number of blocks per row is 169.9,
while the arithmetic mean is 15.65. This makes dc2 especially

7.34x faster than the second-best (DASP) .

Performance
in GFLOP/s

Magicube: 1.8
cuSPARSE: 3.9
DASP: 69.1
SMaT: 2.5

125x faster than cuSPARSE .
,

,

,

Fig. 8: Performance comparison on 9 representative matrices from SuiteSparse.

ill-suited for SMaT’s execution model with static 2D parallel
schedule, with most of the blocks containing only a single
non-zero value, heavily underutilizing tensor cores, achieving
only 2.5 GFLOP/s. This is the use-case where either DASP
row-packing algorithm benefits most (69.1 GFLOP/s) or even
a non-blocked CSR used in cuSPARSE (3.9 GFLOP/s).

C. Synthetic Matrices

Formally, an n × n matrix A = (ai,j) is a band matrix if
all elements are zero outside a diagonally bordered band of
width b: ai,j = 0 if j < i− b or j > i+ b; b ≥ 0. We
evaluate performance on band matrices to measure the depen-
dence of SMaT on the number of blocks ne while isolating
the randomness of the sparse matrix structure. Furthermore, for
band matrices, blocks in BCSR format are already dense, so no
further reordering is necessary. Hence, we do not incorporate
the effect of the reordering while evaluating the kernel.

We perform our tests on matrix A of size 16, 384× 16, 384
with varying the bandwidth from b = 64 all the way up
to b = 16, 384, effectively making the matrix dense. This
allows us to measure a very important performance factor in
sparse computations: at what sparsity threshold a sparse
library can outperform a highly-optimized dense library,
if the matrix is explicitly padded with zeros? Previous
experiments [16] suggest that this can be as high as 99%.
While a band matrix is definitely not a fair representation of
an unstructured sparse matrix, we show that in this artificial
scenario, SMaT can be competitive with cuBLAS.
Note: We measure the performance of cuBLAS only once -
for a dense matrix 16, 384× 16, 384. We then report cuBLAS
performance as the effective FLOP/s, that is, we scale it by
the fraction of nonzeros.

We first measure the performance of C = AB with the
number of columns N = 8 and present the results in Figure 9a.
SMaT is up to 1, 724× faster than cuSPARSE and is at
minimum 7× faster than the second best method DASP. We
notice that SMaT outperforms cuBLAS for sparsity ≥ 78%
and is only 2.3× slower than cuBLAS in the dense case.

For N = 128, the difference between SMaT and the
baselines rises (Figure 9b). As N grows, cuBLAS performance
increases and reaches closer to the hardware peak in the dense
setting. Nevertheless, SMaT performs better than cuBLAS for
sparsity ≥ 96%. Compared with other methods, SMaT is at

minimum 5.3× faster than the second best method, Magicube,
and gets up to 2, 445× faster than cuSPARSE.

D. Scaling Matrix Dimensions

Figure 10 demonstrates the relationship between the com-
pute time and the outer dimension N of the dense matrix B.
The performance evaluation is conducted on the sparse matrix
cop20K A from Table I.

As N grows, SMaT exhibits the best performance among
all the baselines. While DASP and cuSPARSE exhibit a
degradation in performance as N increases, Magicube, similar
to SMaT, shows a slow increase. Although DASP remains the
fastest for N = 1, i.e., for SpMV.

For larger dimensions, such as N = 1, 000, SMaT out-
performs the baseline methods in terms of execution time.
Specifically, SMaT takes 6.98ms to execute, while Magicube
takes 12.13ms, DASP takes 29.70ms, and cuSPARSE takes
60.07ms. This means that SMaT is 1.73×, 4.24×, and 8.60×
faster than the baseline methods, respectively.

E. Distribution of the Number of Blocks per Row

The reordering experiments reveal an important property
of our 2D parallel BCSR schedule. By using a fixed parallel
grid and assigning one block of the output matrix per warp
(Figure 1), SMaT’s schedule is sensitive to the highly skewed
distribution of blocks per row — some warps can have
significantly more non-zero blocks to process than the others.
This can be viewed, for example, for matrix cant: while the
reordering decreases the mean number of blocks per row from
29.6 to 22.8, it increases its standard deviation from 4 to
5.2 (Figure 3). This results in the actual decrease in SMaT’s
performance (Figure 4). In contrast, the remaining libraries
benefit from the reduced block count despite the increased
load imbalance (Figures 5, 6, and 7).

F. Results Summary

Our results consistently show significant improvement over
existing solutions. Several observations stand out from our
experiments:

• DASP, which is a highly optimized SpMV library, often
performs a single SpMV slower than SMaT performs a
tall-and-skinny SpMM with N = 8,

• for relatively dense matrices, cuSPARSE performance
is low (up to 2,445 times lower than SMaT). We also

Faster than cuBLAS
for sparsity 78%

Only 2.3x slower
than cuBLAS

cuBLAS 33x slower
than hardware peak

At MINIMUM 7x faster than
second best (DASP)

1724x times faster
than cuSPARSE

(all zeros) (dense)

𝑁 = 8

SMaT

A100 hardware peak

10−2

10−1

100

101

103

(a) N = 8

15x slower than
cuBLAS

cuBLAS 2x slower than
hardware peak

At MINIMUM 5.3x faster than
second best (Magicube)

2445x times faster
than cuSPARSE

𝑁 = 128

SMaT

A100 hardware peak

10−2

10−1

100

101

103
Faster than cuBLAS

for sparsity 96%

(b) N = 128

Fig. 9: Measured performance of multiplying a synthetic band matrix 16k × 16k with dense matrix 16k × N . Bandwidth b
varies from b = 64 to b = 16k. Corresponding sparsity ranges from 99.7% to 0% (fully dense matrix).

Fig. 10: Wall-clock time of SpMM AB = C, where A is
the sparse matrix cop20k A and B is a tall-and-skinny dense
matrix with varying number of columns N .

observe that its performance drops for denser matrices
(Figure 9),

• Magicube is a highly-specialized library for ML: while
being the second-fastest in the band matrix experiment
(Figure 9b), it quickly runs out of memory for larger
values of N , making it unsuitable for general-purpose
SpMM kernels,

• Sparse matrix column permutation preprocessing does
not significantly reduce the number of blocks in BCSR
format.

VII. RELATED WORK

GEMM Dense matrix multiplication is an active field of
research for decades. Cannon’s algorithm [37] was the first
distributed 2D parallel algorithm for square matrices. van de

Geijn et al. extended it to non-square matrices in the SUMMA
algorithm [38]. Agarwal et al. presented the distributed 3D
algorithm that parallelizes also the reduction dimension [39].
Kwasniewski et al. introduced COSMA [23] – a communica-
tion optimal 2.5D parallel GEMM library for both CPUs and
GPUs. Research in this area varies depending on the hardware
platforms for which it is designed (GPU or CPU), the type
of sparsity it addresses (structured or unstructured), and the
precision levels it targets, including formats such as fp16, fp32,
fp64, int8, and other precision schemes.
Tensor Cores In addition to GEMM and its applications
such as machine learning [22], Tensor cores are successfully
employed to enhance basic operators such as scan and reduc-
tion [40], stencil computation [41], and FFT [42].
Reordering Reordering and blocking have been explored to
accelerate parallel multiplication, particularly in SpMV [43]
and SpMM [44]. Row-reordering is often used to promote
efficient memory hierarchy usage by enhancing locality [45].
This involves moving rows with similar nonzero structures
closer together to locally densify blocks and reduce cache
misses during SpMV or SpMM [46].
SpMV One line of research focuses on multiplying sparse
matrices with dense vectors (SpMV). Researchers have ex-
plored the trade-offs between balancing workload [47], [48],
data locality [49], and format generation [50], [51]. SpMV
overview studies can be found in [52].
SpMM Gao et al. presents an overview of the
existing research on sparse matrix multiplication
(SpGEMM) [53]. NVIDIA has developed cuSPARSE [20]
and cuSPARSELt [54] for sparse matrix multiplication.
cuSPARSE is capable of performing unstructured SpMM for
sparsity above 95% on CUDA Cores, while cuSPARSELt
uses Tensor Cores and utilizes 2:4 structured sparsity. Gale
et al. design Sputnik [55], a GPU kernel to accelerate
sparse matrix operations in neural networks. Chen et al.
present vectorSparse [56], proposing column-vector-sparse-

encoding for SpMM. Li et al. develop Magicube [18], a
high-performance library for low-precision integers on Tensor
Cores focusing on deep learning as well. Furthermore, Li et
al. propose the SR-BCRS format, based on the CS format,
which is suitable for Tensor Cores. While Magicube is for
structured sparse formats, Xue et al [57]. introduce a method
for unstructured sparsity in fp16 precision.

VIII. CONCLUSIONS

This paper introduces SMaT, a novel general-purpose
SpMM library that utilizes Tensor Core hardware units to ac-
celerate Sparse Matrix-Matrix Multiplication (SpMM). SMaT
first employs modern state-of-the-art preprocessing techniques
to significantly reduce the number of blocks in BCSR format,
as well as improve the load balance for the bottom-up 2D
parallel schedule. The optimized CUDA implementation uses
low-level API to fully utilize Tensor Cores, asynchronous
shared memory loads, and warp-level memory alignment. We
develop the empirical performance model that quantifies the
benefit of both the preprocessing and the kernel optimizations.

We perform a comprehensive performance study on both
real-world sparse matrices from SuiteSparse as well as syn-
thetic matrices. Evaluated on NVIDIA Ampere GPUs, we
show the supremacy of SMaT compared to state-of-the-art
libraries: Magicube, DASP, and cuSPARSE. We measure up
to 7.3x speedup vs the second-best library (2.6x on average),
with up to 125x speedup over vendor-optimized cuSPARSE.

Furthermore, while scaling the sparsity ratio on the synthetic
matrices for tall-and-skinny SpMM, we outperform cuBLAS
for sparsity as low as 78%, outperforming cuSPARSE by up
to 2,445 times. The presented results confirm that SpMM
libraries do not need to be highly specialized to narrow use
cases for fixed data types, sparsity patterns, and matrix sizes.

ACKNOWLEDGMENTS

This research is carried out in the frame of the “UrbanTwin:
An urban digital twin for climate action, assessing policies
and solutions for energy, water and infrastructure” project
with the financial support of the ETH-Domain Joint Initiative
program in the Strategic Area Energy, Climate and Sustainable
Environment. This work received EuroHPC-JU funding with
support from the European Union’s Horizon 2020 program and
the European Research Council under grant agreement PSAP,
number 101002047, as well as from the European Union –
NextGenerationEU project. We also wish to acknowledge the
support from the DEEP-SEA project under grant agreement
number 955606. This research is partially funded by the
European Union – NextGenerationEU. The authors would like
to thank the Swiss National Supercomputing Centre (CSCS)
for access and support of the computational resources.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture.
ACM, 2017, pp. 1–12.

[2] H. Abdelkhalik, Y. Arafa, N. Santhi, and A.-H. A. Badawy, “Demys-
tifying the nvidia ampere architecture through microbenchmarking and
instruction-level analysis,” in 2022 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2022, pp. 1–8.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,
Templates for the solution of algebraic eigenvalue problems: a practical
guide. SIAM, 2000.

[4] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework
for numerical and combinatorial computing,” Computing in Science &
Engineering, vol. 10, no. 2, pp. 20–25, 2008.

[5] M. Besta, F. Marending, E. Solomonik, and T. Hoefler, “Slimsell: A
vectorizable graph representation for breadth-first search,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 32–41.

[6] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler,
“To push or to pull: On reducing communication and synchroniza-
tion in graph computations,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), 2017, pp. 93–104.

[7] E. Solomonik, M. Besta, F. Vella, and T. Hoefler, “Scaling betweenness
centrality using communication-efficient sparse matrix multiplication,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (ACM/IEEE Supercom-
puting), 2017, pp. 1–14.

[8] M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoefler,
“Graph processing on fpgas: Taxonomy, survey, challenges,” arXiv
preprint arXiv:1903.06697, 2019.

[9] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[10] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, and E. Alarcón,
“Computing graph neural networks: A survey from algorithms to
accelerators,” ACM Comput. Surv., vol. 54, no. 9, oct 2021. [Online].
Available: https://doi.org/10.1145/3477141

[11] M. Besta and T. Hoefler, “Parallel and distributed graph neural networks:
An in-depth concurrency analysis,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2023.

[12] J. Bazinska, A. Ivanov, T. Ben-Nun, N. Dryden, M. Besta, S. Shen, and
T. Hoefler, “Cached operator reordering: A unified view for fast gnn
training,” arXiv preprint arXiv:2308.12093, 2023.

[13] M. Besta, P. Renc, R. Gerstenberger, P. Sylos Labini, T. Chen, L. Gi-
aninazzi, F. Scheidl, K. Szenes, A. Carigiet, P. Iff, G. Kwasniewski,
R. Kanakagiri, C. Ge, S. Jaeger, J. Was, F. Vella, and T. Hoefler,
“High-performance and programmable attentional graph neural networks
with global tensor formulations,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (ACM/IEEE Supercomputing), 2023.

[14] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, “Sparsity
in deep learning: Pruning and growth for efficient inference and training
in neural networks,” The Journal of Machine Learning Research, vol. 22,
no. 1, pp. 10 882–11 005, 2021.

[15] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse
convolutional neural networks,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 806–814.

[16] Z. Wang, “Sparsert: Accelerating unstructured sparsity on gpus for deep
learning inference,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
31–42. [Online]. Available: https://doi.org/10.1145/3410463.3414654

[17] S. Filippone, V. Cardellini, D. Barbieri, and A. Fanfarillo, “Sparse
matrix-vector multiplication on gpgpus,” ACM Trans. Math. Softw.,
vol. 43, no. 4, Jan. 2017.

[18] S. Li, K. Osawa, and T. Hoefler, “Efficient quantized sparse matrix
operations on tensor cores,” ser. SC ’22. IEEE Press, 2022.

[19] Y. Lu and W. Liu, “Dasp: Specific dense matrix multiply-accumulate
units accelerated general sparse matrix-vector multiplication,” in Pro-
ceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2023, pp. 1–14.

[20] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” in GPU Technology Conference, 2010.

[21] Z. Chen, Z. Qu, L. Liu, Y. Ding, and Y. Xie, “Efficient tensor core-
based gpu kernels for structured sparsity under reduced precision,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021, pp. 1–14.

https://doi.org/10.1145/3477141
https://doi.org/10.1145/3410463.3414654

[22] R. L. Castro, A. Ivanov, D. Andrade, T. Ben-Nun, B. B. Fraguela, and
T. Hoefler, “Venom: A vectorized n: M format for unleashing the power
of sparse tensor cores,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2023, pp. 1–14.

[23] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and
T. Hoefler, “Red-blue pebbling revisited: near optimal parallel matrix-
matrix multiplication,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1–22.

[24] T. M. Aamodt, W. W. L. Fung, T. G. Rogers, and M. Martonosi, General-
purpose graphics processor architectures. Springer, 2018.

[25] X. Yu, T. Liu, X. Wang, and D. Tao, “On compressing deep models
by low rank and sparse decomposition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 7370–
7379.

[26] M. Besta, Z. Vonarburg-Shmaria, Y. Schaffner, L. Schwarz, G. Kwas-
niewski, L. Gianinazzi, J. Beranek, K. Janda, T. Holenstein,
S. Leisinger et al., “Graphminesuite: Enabling high-performance and
programmable graph mining algorithms with set algebra,” arXiv preprint
arXiv:2103.03653, 2021.

[27] R. Eberhardt and M. Hoemmen, “Optimization of block sparse matrix-
vector multiplication on shared-memory parallel architectures,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2016, pp. 663–672.

[28] “How to optimize a cuda matmul kernel for cublas-like performance:
a worklog,” https://siboehm.com/articles/22/CUDA-MMM, accessed:
2024-03-28.

[29] W.-H. Liu and A. H. Sherman, “Comparative analysis of the
cuthill–mckee and the reverse cuthill–mckee ordering algorithms for
sparse matrices,” SIAM Journal on Numerical Analysis, vol. 13, no. 2,
pp. 198–213, 1976. [Online]. Available: https://doi.org/10.1137/0713020

[30] Y. Saad, “Finding exact and approximate block structures for ilu
preconditioning,” SIAM Journal on Scientific Computing, vol. 24, 09
2001.

[31] U. Çatalyürek, K. Devine, M. Faraj, L. Gottesbüren, T. Heuer,
H. Meyerhenke, P. Sanders, S. Schlag, C. Schulz, D. Seemaier,
and D. Wagner, “More recent advances in (hyper)graph partitioning,”
ACM Comput. Surv., vol. 55, no. 12, mar 2023. [Online]. Available:
https://doi.org/10.1145/3571808

[32] H. Zhao, T. Xia, C. Li, W. Zhao, N. Zheng, and P. Ren, “Exploring better
speculation and data locality in sparse matrix-vector multiplication on
intel xeon,” in 2020 IEEE 38th International Conference on Computer
Design (ICCD), 2020, pp. 601–609.

[33] P. S. Labini, M. Bernaschi, W. Nutt, F. Silvestri, and F. Vella, “Block-
ing sparse matrices to leverage dense-specific multiplication,” in 2022
IEEE/ACM Workshop on Irregular Applications: Architectures and Al-
gorithms (IA3), 2022, pp. 19–24.

[34] D. Kim and J. Kim, “Analysis of several sparse formats for matrices
used in sparse-matrix dense-matrix multiplication for machine learning
on gpus,” in 2022 13th International Conference on Information and
Communication Technology Convergence (ICTC). IEEE, 2022, pp. 629–
631.

[35] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis,
M. Henderson, Y. Hu, and R. Sandstrom, “The suitesparse matrix
collection website interface,” Journal of Open Source Software, vol. 4,
no. 35, p. 1244, 2019. [Online]. Available: https://doi.org/10.21105/
joss.01244

[36] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lu-
cas, R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE conference
on Supercomputing, vol. 213, no. 10.1145, 2006, p. 1.

[37] L. E. Cannon, A cellular computer to implement the Kalman filter
algorithm. Montana State University, 1969.

[38] R. A. van de Geijn and J. Watts, “SUMMA: Scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255–274, 1997.

[39] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar,
“A three-dimensional approach to parallel matrix multiplication,” IBM
Journal of Research and Development, vol. 39, no. 5, pp. 575–582, 1995.

[40] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating
reduction and scan using tensor core units,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New York,

NY, USA: Association for Computing Machinery, 2019, p. 46–57.
[Online]. Available: https://doi.org/10.1145/3330345.3331057

[41] X. Liu, Y. Liu, H. Yang, J. Liao, M. Li, Z. Luan, and D. Qian,
“Toward accelerated stencil computation by adapting tensor core
unit on gpu,” in Proceedings of the 36th ACM International
Conference on Supercomputing, ser. ICS ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3524059.3532392

[42] B. Li, S. Cheng, and J. Lin, “tcfft: A fast half-precision fft library for
nvidia tensor cores,” in 2021 IEEE International Conference on Cluster
Computing (CLUSTER), 2021, pp. 1–11.

[43] E. Cuthill, Several Strategies for Reducing the Bandwidth of Matrices.
Boston, MA: Springer US, 1972, pp. 157–166. [Online]. Available:
https://doi.org/10.1007/978-1-4615-8675-3 14

[44] J. Pichel, D. Heras, J. Cabaleiro, and F. Rivera, “Performance
optimization of irregular codes based on the combination of reordering
and blocking techniques,” Parallel Computing, vol. 31, no. 8, pp.
858–876, 2005. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167819105000803

[45] P. S. Labini, M. Bernaschi, W. Nutt, F. Silvestri, and F. Vella, “Block-
ing sparse matrices to leverage dense-specific multiplication,” in 2022
IEEE/ACM Workshop on Irregular Applications: Architectures and Al-
gorithms (IA3), 2022, pp. 19–24.

[46] K. Lakhotia, S. Singapura, R. Kannan, and V. Prasanna, “Recall:
Reordered cache aware locality based graph processing,” in 2017 IEEE
24th International Conference on High Performance Computing (HiPC),
2017, pp. 273–282.

[47] J. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ortı́, and A. Tomás,
“Compression and load balancing for efficient sparse matrix-vector prod-
uct on multicore processors and graphics processing units,” Concurrency
and Computation: Practice and Experience, vol. 34, 07 2021.

[48] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarath, and P. Sa-
dayappan, “Fast sparse matrix-vector multiplication on gpus for graph
applications,” in SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 781–792.

[49] C. Alappat, A. Basermann, A. R. Bishop, H. Fehske, G. Hager,
O. Schenk, J. Thies, and G. Wellein, “A recursive algebraic
coloring technique for hardware-efficient symmetric sparse matrix-
vector multiplication,” ACM Trans. Parallel Comput., vol. 7, no. 3, jun
2020. [Online]. Available: https://doi.org/10.1145/3399732

[50] A. Benatia, W. Ji, Y. Wang, and F. Shi, “Sparse matrix format selection
with multiclass svm for spmv on gpu,” in 2016 45th International
Conference on Parallel Processing (ICPP), 2016, pp. 496–505.

[51] Z. Du, J. Li, Y. Wang, X. Li, G. Tan, and N. Sun, “Alphasparse:
Generating high performance spmv codes directly from sparse matrices,”
2022.

[52] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, vol. 50, pp. 36–
77, 2009.

[53] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang,
“A systematic survey of general sparse matrix-matrix multiplication,”
ACM Comput. Surv., vol. 55, no. 12, mar 2023. [Online]. Available:
https://doi.org/10.1145/3571157

[54] Nvidia, “cusparselt documentation,” https://docs.nvidia.com/cuda/
cusparselt, 2024.

[55] T. Gale, M. Zaharia, C. Young, and E. Elsen, “Sparse gpu kernels for
deep learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’20.
IEEE Press, 2020.

[56] Z. Chen, Z. Qu, L. Liu, Y. Ding, and Y. Xie, “Efficient tensor
core-based gpu kernels for structured sparsity under reduced precision,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3458817.3476182

[57] Z. Xue, M. Wen, Z. Chen, Y. Shi, M. Tang, J. Yang, and
Z. Luo, “Releasing the potential of tensor core for unstructured
spmm using tiled-csr format,” in 2023 IEEE 41st International
Conference on Computer Design (ICCD). Los Alamitos, CA, USA:
IEEE Computer Society, nov 2023, pp. 457–464. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCD58817.2023.00076

https://siboehm.com/articles/22/CUDA-MMM
https://doi.org/10.1137/0713020
https://doi.org/10.1145/3571808
https://doi.org/10.21105/joss.01244
https://doi.org/10.21105/joss.01244
https://doi.org/10.1145/3330345.3331057
https://doi.org/10.1145/3524059.3532392
https://doi.org/10.1007/978-1-4615-8675-3_14
https://www.sciencedirect.com/science/article/pii/S0167819105000803
https://www.sciencedirect.com/science/article/pii/S0167819105000803
https://doi.org/10.1145/3399732
https://doi.org/10.1145/3571157
https://docs.nvidia.com/cuda/cusparselt
https://docs.nvidia.com/cuda/cusparselt
https://doi.org/10.1145/3458817.3476182
https://doi.ieeecomputersociety.org/10.1109/ICCD58817.2023.00076

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 A sparse matrix preprocessing permutation scheme
that decreases the number of dense blocks by up to
2.5x.

C2 A high-performance implementation of the blocked-
CSR (BCSR) SpMM on Tensor Cores using the low-
level CUDA MMA API.

C3 SMaT: an end-to-end solution for general-purpose
SpMM that supports unstructured sparsity and all
data types supported by the TC units.

B. Computational Artifacts

A1 https://doi.org/10.5281/zenodo.13305901

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2, C3 Figure 2-10

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

Artifact A1 represents general-purpose SpMM library that
works on unstructured sparse matrices. The artifact imple-
ments the contributions stated in Chapter I-A.

Expected Results

Execution time comparison of SMaT with DASP, cuS-
PARSE, and Magicube. Furthermore:

• DASP often performs a single SpMV slower than SMaT
performs a tall-and-skinny SpMM with N = 8,

• cuSPARSE performance is low for relatively dense ma-
trices (up to 2,445 times lower than SMaT),

• Magicube while being the second-fastest in the band
matrix experiment, quickly runs out of memory for larger
values of N , making it unsuitable for general-purpose
SpMM kernels,

• Sparse matrix column permutation preprocessing does
not significantly reduce the number of blocks in BCSR
format.

Expected Reproduction Time (in Minutes)

The total estimated time for reproducing artifact A1 is
70 min. Compilation of artifact takes 2 min. Downloading
selected matrices from the SuiteSparse Matrix Collection takes
10 min. Generating synthetic matrices runs for 25 min or more.
Preprocessing takes 2-3 min per matrix depending on matrix
size. Since we do not reorder synthetic band matrices, the
total preprocessing for 9 matrices is 25 min or more. Finally,
running SMaT multiple times on all matrices takes 5 min.

Artifact Setup (incl. Inputs)

Hardware: We run our experiments on the Swiss Na-
tional Computing Center’s Ault compute cluster. Each node
is equipped with a single NVIDIA A100-SXM4-40GB GPU,
and AMD EPYC 7742 @ 2.25GHz CPU. The A100 driver
version is 530.30.02.

Software: All experiments were executed using the GCC
12.3.0 compiler, NVIDIA nvcc v12.0, NVIDIA cuSPARSE
v12.0, NVIDIA CUDA Toolkit v12.0, Python 3.9, and the
following Python libraries: Pandas, Matplotlib, Numpy, Scipy,
and Seaborn.

Datasets / Inputs: We consider two different origins of
matrices:

• SuiteSparse Collection: These matrices come from 7
application domains, and are considered a broad represen-
tation of different types of sparse matrices. The matrices
can be downloaded at: http://sparse.tamu.edu/.
In the artifact we provide a script for downloading that
can be called using:
$ python download_suitesparse.py

• Synthetic band matrices: we generate a series of band
matrices of variable bandwidth, scaling their sparsity
from 99.7% all the way to dense matrices (0% sparsity).
To generate the necessary matrices one needs to execute:
$ python generate_matrices.py

Installation and Deployment: We provide a file with all the
requirements for a conda environment. To install and use the
environment:
$ conda env create -f smat_env.yml
$ sudo apt-get install libgflags-dev
$ conda activate smat

Artifact Execution

We identify the following tasks:
T1 download SuiteSparse matrices
T2 generate synthetic band matrices
T3 preprocess the matrices
T4 run SMaT, DASP, cuSPARSE, and Magicube

First, we prepare the input matrices by executing tasks T1

and T2, which can be run in parallel. Afterward, we need to
preprocess and reorder the matrices. Finally, we can perform
SpMM using SMaT on the processed matrices. Hence, task
dependencies are the following: T1, T2 → T3 → T4.

Artifact Analysis (incl. Outputs)

We provide a Jupyter notebook for recreating all the figures
in the paper. After the results have been saved it is necessary to
change the path pointing in the notebook and run all notebook
elements in plotting.ipynb.

Artifact Evaluation (AE)
For reproducing the results we use the Chameleon node

with A100 NVLink 844736d7-5a65-47ce-a54c-fd82dea47069
(F1BG3Q3) launched with CC-Ubuntu20.04-CUDA image.

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

Installing and preparing our library is explained in Section
II-A. For compiling the code for SMaT run the following:
$ cd src/cuda_hgemm
$ source compile.sh

For comparison towards baselines, we use the exact same
libraries as proposed by the authors. For using DASP and
cuSPARSE, we follow the instructions from https://github.
com/SuperScientificSoftwareLaboratory/DASP. After chang-
ing the directory to baselines/DASP compile the code with
the following command:
$ make half

For Magicube we create a separate environment as
recommended by the authors at https://github.com/Shigangli/
Magicube. To achieve that, execute the following commands:
$ conda create --name py38_sc22 python=3.8
$ conda activate py38_sc22
$ pip install torch==1.9.1+cu111
torchvision==0.10.1+cu111
torchaudio==0.9.1 -f https://download.
pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt
$ cd baselines/Magicube/baselines
$ bash setup.sh

Artifact Execution

After downloading the dataset and creating synthetic band
matrices as described in II-A, we perform reordering of
all SuiteSparse matrices. Firstly, compile the library for
reordering:
$ cd preprocess
$ make all
For further details check: https://github.com/
HicrestLaboratory/SPARTA. Secondly, change the path
to point to the location of SuiteSparse matrices inside
reorder.py, and then execute the command:
$ python reorder.py

When the script finishes this will populate the same folder
with reordered SuiteSparse matrices.

DASP & cuSPARSE After changing the directory to base-
lines/DASP and setting the path in the script to point to the
location of matrices run:
$ source run_dasp_cusparse.sh

This will perform SpMM for all the matrices for
DASP and cuSPARSE and save the results in file re-
sults dasp cusparse.csv

Magicube Activate the Magicube environment only for this
with:
$ conda activate py38_sc22

Magicube expects the input matrices to be in a different
format than the rest of the methods. First, change the directory
to baselines/Magicube/SpMM/SpMM, set the path to the folder
with matrices inside the script, and create the appropriate
format for Magicube by executing:
$ python magicube_format.py

Second, set the path in the script run magicube.py to point
to the location of matrices that have the appropriate format for
Magicube path/magicubeFormat:
$ python run_magicube.py

This will run all the experiments for Magicube and save
the results in file results magicube.out. Lastly, return to the
original environment with:
$ conda activate smat

SMaT Change the directory to src/cuda hgemm, set the
path in the script to point to the location of matrices, and
run:
$ source run_smat.sh

This will run all the experiments for SMaT and store the
results in file results smat.csv.

Artifact Analysis (incl. Outputs)

After the experiments are finished we provide a Jupyter
Notebook plotting.ipynb with all the necessary code for re-
producing the figures in the paper and analyzing the results.

Firstly, the notebook parses the output files containing all
the results:

• results dasp cusparse.csv,
• results magicube.out,
• results smat.csv.
Secondly, after the results are parsed we provide sections

for reproducing Figures 2-10.

	Introduction
	Background
	Hardware execution model
	Execution model
	Tensor Cores
	Memory model

	Sparse matrix representation
	Unstructured sparsity
	Structured sparsity
	Blocked format

	Performance model
	Single instruction time Te
	Number of elementary computations ne

	SMaT— (S)parse (Ma)trix Matrix (T)ensor Core-accelerated library
	Overview
	Data Structures
	Preprocessing
	Implementation
	Asynchronous Data Loads

	Evaluation
	Comparison Targets
	Hardware Infrastructure
	Software Stack
	Tested Scenarios
	Methodology

	Results
	Preprocessing reordering
	SuiteSparse
	Synthetic Matrices
	Scaling Matrix Dimensions
	Distribution of the Number of Blocks per Row
	Results Summary

	Related Work
	Conclusions
	References

