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Abstract

We introduce MODEL SELECTOR1, a framework for label-efficient selection of pretrained classifiers. Given
a pool of unlabeled target data, MODEL SELECTOR samples a small subset of highly informative examples
for labeling, in order to efficiently identify the best pretrained model for deployment on this target dataset.
Through extensive experiments, we demonstrate that MODEL SELECTOR drastically reduces the need for
labeled data while consistently picking the best or near-best performing model. Across 18 model collections
on 16 different datasets, comprising over 1,500 pretrained models, MODEL SELECTOR reduces the labeling
cost by up to 94.15% to identify the best model compared to the cost of the strongest baseline. Our results
further highlight the robustness of MODEL SELECTOR in model selection, as it reduces the labeling cost by up
to 72.41% when selecting a near-best model, whose accuracy is only within 1% of the best model.

1 Introduction
The abundance of openly available machine learning models poses a dilemma: selecting the best pretrained
model for domain-specific applications becomes increasingly challenging. As the development and deployment
of large-scale machine learning models have been accelerating at a rapid pace (He et al., 2016; Chiu et al.,
2018; Mann et al., 2020; Radford et al., 2019), a wide selection of pretrained models for natural language
processing (Devlin et al., 2019; Liu et al., 2019) and computer vision (Krizhevsky et al., 2012; Xie et al.,
2017), varying in architecture, type, and complexity, are now accessible through various open-source and
academic platforms (HuggingFace, 2024; PyTorch, 2024; TensorFlow, 2024). AutoML platforms (AWS,
2024; GoogleCloud, 2024) further increase this variety by providing researchers and developers with instant
access to powerful bespoke models through automated workflows and pretrained model repositories. Thanks
to advances in training methods and model architecture, many of these models now support zero-shot
learning (Brown, 2020; Xian et al., 2018; Pourpanah et al., 2022; Radford et al., 2021), and can tackle new
tasks without requiring fine-tuning or updates to their weights. Traditionally, models are often picked by hand,
involving intuition-based sampling and evaluation, which quickly becomes impractical as the number of models
and potential evaluation samples increases, risking suboptimal choices and inefficient resource utilization.

To address this, several techniques perform automated model validation by selecting and labeling a small
informative subset of data examples to assess model performance and facilitate label-efficient model selection
and evaluation (Sawade et al., 2012; Matsuura & Hara, 2023; Kossen et al., 2021), which are also commonly
referred to as active model selection (Karimi et al., 2021; Matsuura & Hara, 2023; Liang et al., 2020; Gardner
et al., 2015). However, many of the methods in the pool-based setting (characterized by the availability of
a large pool of unlabeled data) either assume a fixed number of available models (Sawade et al., 2012) or

1Source code: https://github.com/RobustML-Lab/model-selector
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Figure 1: An overview of our label-efficient model selection pipeline with MODEL SELECTOR. Given a pool
of n unlabeled data examples and a set of m pretrained classifiers, MODEL SELECTOR aims to select b (with
b ≪ n) unlabeled examples that, once labeled, can identify the best pretrained model.

are restricted to specific model families (Gardner et al., 2015). Others require retraining the model each
time a new example is labeled (Ali et al., 2014), which can be computationally expensive and potentially
unnecessary for ready-to-deploy models.

In this work, we aim to extend these settings and ask: Given a pool of unlabeled data, how can we identify
the most informative examples to label in order to select the best classifier for this data, both in a model-agnostic
and efficient manner?

Contributions In this paper, we introduce MODEL SELECTOR, a fully model-agnostic approach for identifying
the best pretrained model using a limited number of labeled examples. Unlike existing methods, which often
rely on assumptions about the model architectures or require detailed knowledge of model internals, our
approach treats models purely as black-boxes requiring no additional training and anything beyond hard
predictions, i.e., the predicted label without predictive distribution. To the best of our knowledge, this is the
first work in the pool-based setting that is both model-agnostic and relies solely on hard predictions.

Formally, given a pool of n newly collected, unlabeled data examples and a labeling budget b with b ≪ n,
MODEL SELECTOR aims to select b unlabeled examples that, once labeled, provide the maximum expected
information gain about the best model (model with the highest utility) for this data. To achieve this, we
employ the most informative selection policy (Chen et al., 2015; Kirsch et al., 2019; Treven et al., 2023;
Chattopadhyay et al.; Ding et al., 2024), where we greedily label the most informative examples until the
labeling budget b is exhausted. We define informativeness in terms of mutual information between the best
model and data labels, relying on a single-parameter model as proxy that nonetheless sufficiently captures the
relationship between them. Despite its simplicity, the proposed single-parameter model is highly effective in
identifying the best model under limited labels. Moreover, for such a simplified model, the most informative
selection policy has a provable near-maximal utility, as shown by Chen et al. (2015).

We conduct extensive experiments comparing our method against a range of adapted methods over 1, 500
models across 18 different model collections and 16 different datasets. We observe that MODEL SELECTOR

consistently outperforms all the baselines. In particular, MODEL SELECTOR reduces the labeling cost by up
to 94.15% compared to the best competing baseline in finding the best model. We also show that MODEL

SELECTOR finds a near-best model with a reduction in labeling cost by up to 72.41% within 1% accuracy of
the best model.

Once the best pretrained machine learning model is identified, we then deploy it for making predictions
on the remaining unlabeled samples. An overview of MODEL SELECTOR is provided in Figure 1. Our approach
is designed to reduce the expenses related to pretrained model selection for classifiers, marking a step forward
in efficient machine learning practice.
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2 Related Work
To date, label-efficient model selection has been studied primarily in the stream-based (online) setting (Piratla
et al., 2021; Liu et al., 2022a; Kassraie et al., 2023; Madani et al., 2012; Xia et al., 2024a; Liu et al., 2022b; Li
et al., 2024a,b; Xia et al., 2024b; Karimi et al., 2021). In the pool-based setting, where we have access to the
entire collection of unlabeled examples, the literature often makes strong assumptions, such as predefined
model families or learning tasks. For example, both Liang et al. (2020) and Zhao et al. (2008) assume
specific learning tasks (binary time series classification or graph-based semi-supervised learning, respectively),
while Gardner et al. (2015) limit model selection to Gaussian processes. Other works including Ali et al.
(2014) consider a general class of hypotheses but rely on sequential training. Bhargav et al. (2024) introduce
a misclassification penalty framework for hypothesis testing in a batched setting, and Kumar & Raj (2018)
perform classifier risk estimation on stratified batches without strong assumptions.

Several works align closely with our setting, focusing on model selection without the previously mentioned
assumptions. These works focus on evaluating the risk of a single model (Sawade et al., 2010; Katariya et al.,
2012; Kossen et al., 2021), comparing two models (Sawade et al., 2012; Leite & Brazdil, 2010), or, like ours,
comparing multiple models (Matsuura & Hara, 2023). We adapt the method of Sawade et al. (2012) for
pairwise model comparison in our setting (AMC) and use VMA (Matsuura & Hara, 2023) as a baseline. While
AMC minimizes the asymptotic variance of the estimated loss for each model, VMA minimizes the variance of
the estimated test loss conditioned on previously queried examples. Due to the lack of applicable baselines,
we also employ uncertainty and margin sampling (Dagan & Engelson, 1995; Seung et al., 1992; Freund et al.,
1997).

Unlike previous works, we propose a fully agnostic method, making no assumptions about model families,
tasks, or the use of soft predictions. Additionally, our work is related to optimal information-gathering
strategies, with a discussion of related work deferred to the Appendix C, in order to prioritize works with the
same objective of label-efficient model selection.

3 Model Selector
In this section, we present our label-efficient model selection algorithm, MODEL SELECTOR. We start by
describing the problem setup, where we connect the unknown best model to the true data labels using a
single-parameter likelihood model. Then, we introduce the MODEL SELECTOR algorithm, which is designed to
identify the best pretrained model with limited labels. We end the section by providing further details on the
algorithm and explain how this single parameter can be learned directly from the data without requiring any
labels.

3.1 Problem Setting
Consider a pool of n freshly collected unlabeled examples denoted by D = {(xi, Yi) ∈ X × Y |i ∈ [n]}, whose
labels Yi are unobserved2. We denote the true labels by yi.

For a given set of m pretrained, ready-to-deploy classifiers M = {hj : X 7→ Y |j ∈ [m]}, and a labeling
budget b with b ≪ n, our aim is to identify the best pretrained model h(·) among M by querying a small
number of at most b labels, and perform inference for the remaining n − b examples using this model.
The best model here is defined as the model that fits the data D best if all n labels yi∈[n] were available.
In this work, we consider the model with the highest utility (accuracy) on n labels as the best. That is,
h∗ = argmaxhj∈M 1/n

∑
i=[n] 1[hj(xi) = yi].

The best model is unknown to us without labels. We represent this unknown by using a random variable
H, with a known prior distribution H ∼ P(H = hj) over the set of candidate models M = {hj |j ∈ [m]}. Our
goal is to uncover the identity of H for the target data D by using as few labels as possible. That is, we want
h∗ = argmaxhj∈M P(H = hj |L) where L denotes the observed labels. To achieve this, we will sequentially
label new data examples that reveals information about H.

2In here and what follows [n] := {1, 2, ...n}.
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Given that accuracy is our chosen utility measure, we focus on the binary outcome of correct versus
incorrect predictions made by H among the candidate models M on these labeled examples. With this
intention, we use a parameter that represents the probability of this binary outcome. Formally, we characterize
the behavior of the best model h∗ by an error probability ϵ when predicting the true label as follows:

P(H(x) ̸= y|H = h∗) = ϵ, (1)

P(H(x) = y|H = h∗) = 1− ϵ

where ϵ ∈ [0, 1]. We also assume that the true (unobserved) labels {Yi |i ∈ [n]} are conditionally independent
given H. Thus, they can be interpreted as generated according to the best model h∗, and flipped with
probability ϵ independently at random. We learn ϵ prior to model selection process, as detailed in Section 3.3.

Our primary motivation for this formulation is to establish a highly compact yet effective and interpretable
relationship between the best model and the true labels. Although this problem setting closely aligns with the
one studied by Chen et al. (2015), which inspired our approach, representing all class conditional relationships
with a single parameter is a major simplification of the problem. Next, we introduce the MODEL SELECTOR

algorithm and explain how it uses Equation 1 to select informative examples to label, followed by algorithmic
details concerning the choice of ϵ.

3.2 The Algorithm
Given an unlabeled data pool D, we want to identify the b most informative examples to label for model
selection. We characterize the information contained in the labels towards H using Shannon’s mutual
information with respect to Equation 1.

Entropy, as a measure of uncertainty, given a discrete random variable X distributed according to
P : X → [0, 1] is defined as H(X) := −

∑
x∈X P(X = x) logP(X = x). The mutual information between

X and Y measures the expected information gain that Y provides about X, and is defined as: I(X;Y ) =
H(X)−H(X|Y ).

Our objective can be formalized as finding the set of labeled data examples LOPT[b] (of size at most b) that
gives us maximum information about H. That is,

LOPT[b] := argmax
L⊂{(xi,yi) |i∈[n]}

s.t. |L|≤b

I(H;L). (2)

Starting from the initial pool of unlabeled examples D, the strategy of MODEL SELECTOR is to greedily pick
the unlabeled example that provides the maximal information gain about the true value of H and request its
label. At each greedy step t, MODEL SELECTOR queries the label of xt where:

xt = argmax
x∈Ut

I(H;Y |x,Lt) (3)

where Lt and Ut respectively denote the disjoint sets of labeled and unlabeled examples at step t.
To compute the information gain for the unlabeled data example x, we can express Equation 3 in terms of

differential entropies as follows:

xt = argmax
x∈Ut

H(H|Lt)− EY [H(H|Lt ∪ {(x, Y )})]

= argmin
x∈Ut

EY [H(H|Lt ∪ {(x, Y )})] (4)

where the expectation in EY [·] is taken over Y , since the true label y for the corresponding x is unknown3.
Equation 4 is equivalent to minimizing the model posterior uncertainty (Nguyen et al., 2021). It suggests

that the most informative sampling policy for unlabeled data is equivalent to minimizing the entropy of the

3To compute this expectation, we approximate the posterior over the classes as uniform over the model predictions, motivated by its
robust performance observed in the results.

4



posterior of H. To compute this entropy, we require the expected entropy of the model posterior given the
example x and its hypothetical label c ∈ Y as well as the labeled examples Lt, which we refer to as the
hypothetical model posterior at t given x. By applying Bayes’ rule, we obtain the following expression of the
hypothetical model posterior:

P(H = hj |Lt ∪ {(x, Y = c)}) ∝ (5)

P(Lt ∪ {(x, Y = c)})|H = hj) P(H = hj).

Consider a uniform prior over models with P (H = hj) = 1/m for simplicity. We have P(H = hj |Lt ∪ {(x, Y =
c)}) ∝ P(Lt ∪ {(x, Y = c)})|H = hj). Further applying the model in Equation 1 to P(Lt ∪ {(x, Y = c)})|H =
hj), the hypothetical model posterior can be computed as:

P(H = hj |Lt ∪ {(x, Y = c)}) ∝ (6)

(1− ϵ)hj,(t,x)ϵt−hj,(t,x)

where hj,(t,x) denotes the number of correct predictions of classifier hj on Lt ∪ {(x, Y = c)}).
Upon selecting the most informative example xt at round t using Equation 4, and receiving its label yt

from the oracle, MODEL SELECTOR updates the labeled set Lt with Lt+1 = Lt ∪ {xt, yt} and unlabeled set Ut

with Ut+1 = Ut\{xt} as well as the model posterior with

P(H = hj |Lt+1) ∝ (7)

P(H = hj |Lt)(1− ϵ)1[hj(xt)=yt]ϵ1[hj(xt )̸=yt]

It then selects another example to label from the pool of remaining unlabeled examples Ut. After a number
of these labels are requested up to the budget b, MODEL SELECTOR returns the model with the highest accuracy
on the labeled set Lb. The pseudocode of this algorithm is depicted in Algorithm 1.

Algorithm 1 MODEL SELECTOR

Require: modelsM = {h1, . . . , hm}, unlabeled examples U0 , parameter ϵ, labeling budget b, oracle
1: L0 ← {}
2: for t = 0 to b− 1 do
3: for c ∈ Y do
4: P(H = hj | Lt ∪ {(x, Y = c)})← 1

Z
P(H = hj |Lt)(1− ϵ)1[hj(xt)=c]ϵ1[hj(xt )̸=c] ▷ hypothetical model

posterior
5: end for
6: xt ← argminx∈Ut

EY [H(H|Lt ∪ {(x, Y )})]
7: yt ← oracle(xt)
8: Lt+1 ← Lt ∪ {(xt, yt)}
9: Ut+1 ← Ut\{xt}

10: P(H = hj |Lt+1)← 1
Z
P(H = hj |Lt)(1− ϵ)1[hj(xt)=yt]ϵ1[hj(xt )̸=yt] ▷ update model posterior

11: end for
12: return argmaxhj∈M

1
b

∑
i∈Lb

1[hj(xi) = yi] ▷ select the best model

3.3 Algorithmic Details
We determine the value of ϵ prior to the model selection process by conducting a grid search over a range
of values and choosing ϵ that yields the best performance in terms of accurately identifying the best model
(with details deferred to Section 4.3.1) without requiring labels. In many active learning scenarios, it is a
standard practice to allocate an initial budget for exploration (Lewis, 1995; McCallum et al., 1998; Zhang &
Chen, 2002; Hoi et al., 2006; Zhan et al., 2022), which typically involves randomly sampling some examples
and querying their labels to obtain a rough estimate of dynamics of interest. This would yield an ϵ for our
work. However, upon exploring this option, we discovered that ϵ can also be effectively learned by generating
noisy labels using pretrained models. Specifically, we construct a noisy oracle, denoted as {ŷi}i∈[n], for the
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unlabeled examples {xi}i∈[n] by leveraging the distribution of predicted classes from the candidate models.
For tasks with a limited number of classes, we label each example with the most frequently predicted class;
for tasks with a larger set of classes, we sample a class based on this distribution. We then carry out our grid
search using these noisy labels as if they were the true oracle, and choose the best-performing ϵ.

For all datasets and model collections, we estimate ϵ for our problem without the need for any initial
labeled data. Quantitatively, our estimation of ϵ has an error margin of only 0.01 compared to the values
obtained using the ground truth oracle. We refer to Appendix D for more details on this process.

According to Equation 1, an immediate expectation is that the ideal value for ϵ should reflect the the error
rate of the best model for the target data, guiding us to the data examples where our epistemic uncertainty
about the best model is highest. However, our experiments indicate that this can sometimes lead to overfitting
to the evidence, possibly due to our single-parameter model in Equation 1 being a further simplification of the
model proposed by Chen et al. (2015) and misaligned with their modeling assumptions. To illustrate this,
consider a scenario in which the best model has an accuracy of 0.9 on the target dataset, which implies that
ϵ = 0.1. In this case, at each step, the probability that a model hj ∈ M is the best model, represented by the
posterior P(H = hj |Lt), is scaled by a factor of (1−ϵ)/ϵ if hj correctly predicts the label for xt, as specified
in Equation 7. For ϵ = 0.1, this scaling factor becomes 9, which heavily weights the evidence and leads to
overfitting. Our grid search results support this observation: larger values of ϵ lead to more conservative
updates to the model posterior, providing a regularization effect that mitigates overfitting to the evidence and
improves overall performance.

The parameter ϵ can also be interpreted in terms of the model disagreement within the exploration-
exploitation tradeoff. When ϵ is high, it yields better results in scenarios where the models exhibit high
disagreement, encouraging exploration over exploitation to build sufficient confidence on the best model.
In contrast, a lower ϵ increases the belief in the labeled examples when model disagreement is low. In this
regard, the effectiveness of tuning ϵ using noisy labels is intuitive: in our simplified single-parameter model, ϵ
serves as a proxy for measuring disagreement among competing models regarding the data labels. By learning
ϵ directly from these noisy labels generated by model predictions, we can accurately gauge the extend of it
without requiring any labeled data. Although these noisy labels alone may not reliably identify the best or
nearly best model (as shown in Appendix D), they still offer valuable insights that guide MODEL SELECTOR in
making more informed model selection decisions.

4 Experiments
We conduct a comprehensive set of experiments to evaluate the performance of MODEL SELECTOR for model
selection. Our experiments span 8 vision tasks and 8 text classification tasks, each varying in number of
classes. We test across 18 model collections with more than 1,500 pretrained models.

4.1 Datasets and Model Collections
For image classification tasks, we use 3 ImageNet V2 datasets (Recht et al., 2019) with 1, 000 classes and
10, 000 examples. We download more than 100 pretrained models for each dataset from PyTorch (2024),
and further fine-tune them with different hyperparameters, resulting in varying accuracies. The model
architectures range from ResNet (He et al., 2016) and MobileNet (Howard et al., 2017) to EfficientNet (Tan &
Le, 2020), with accuracy ranging from 43% to 87%.

We also consider the PACS dataset (Li et al., 2017), in order to test model selection in the domain
adaptation setting, which includes four domains. We train 30 models using the architectures mentioned above,
resulting in a range of model accuracy from 73% to 94%.

For text classification tasks, we add 8 datasets from the GLUE benchmark (Wang et al., 2019), with test
set sizes ranging from 71 to 40, 430. We use pretrained models from HuggingFace (2024) without further
fine-tuning. The model collections include architectures such as BERT (Devlin et al., 2019), DistilBERT (Sanh
et al., 2020), and RoBERTa (Liu et al., 2019). The number of models in each collection varies from 80 to 110,
and accuracy ranges from 5% to 95%. The GLUE benchmark predicts 2 or 3 classes depending on the dataset.

Additionally, we use the same datasets and pretrained models as Karimi et al. (2021), who study the
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online setting. The datasets we use include CIFAR-10 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009),
Drift (Vergara, 2012), and EmoContext (SemEval, 2024).

We refer to Appendix A for additional details on datasets and model collections.

4.2 Baselines
To evaluate MODEL SELECTOR we compare against random sampling (RANDOM), as well as several adapted
strategies listed below.
• Uncertainty Sampling. We adapt the method of Dagan & Engelson (1995) for model selection by creating a

probability distribution over classes based on model predictions for each example. We then rank examples
by their entropy and select the top b example with the highest entropy.

• Margin Sampling. Adapted by Seung et al. (1992); Freund et al. (1997). The MARGIN method is non-
adaptive and selects examples with the smallest margin, defined as the difference between the highest and
second-highest class probabilities.

• Active Model Comparison. We adapt AMC from Sawade et al. (2012), which optimizes sampling to reduce
the likelihood of selecting a worse model. While originally proposed for comparing two models within a
labeling budget, we extend it to evaluate all pairs of pretrained models for best model selection.

• Variance Minimization Approach. We implement VMA from Matsuura & Hara (2023), which samples
examples to minimize the variance of estimated risk. While VMA requires softmax predictions, our setup
treats models as black boxes, so we substitute softmax predictions with a probability distribution based on
model predictions.

Notably, none of these methods are explicitly designed for pretrained model selection with limited labels, yet
we adapt them as baseline comparisons within this newly formalized model selection framework.

4.3 Experimental Setup
4.3.1 Evaluation Protocol and Learning ϵ

We employ the following evaluation protocol. We uniformly sample n i.i.d. instances from the entire test data.
Each algorithm sequentially queries up to a labeling budget b and selects the model with the highest accuracy
on these b labeled examples. We consider the model achieving the highest accuracy across all n labels as the
true best model. We then evaluate each method by comparing its selected model based on b labels to the true
best model. We call this process realization and repeat it multiple times to obtain a performance estimate for
each method.

We learn the parameter ϵ for MODEL SELECTOR directly from the model predictions, as mentioned in
Section 3.3. We first perform noisy labeling by assigning each data example the class most predicted by our
models. For datasets with a large number of classes, we assign labels randomly based on the probability
distributions formed by the model predictions. We then run our evaluation protocol treating our noisy labels
as oracle labels and perform a grid search over different values of ϵ. Finally, we select the ϵ that makes MODEL

SELECTOR perform best in identifying the best model, solely with the noisy labels.
Our experiments yield several insightful observations regarding the selected values of the parameter ϵ. For

a comprehensive analysis of these findings, we refer to Appendix D.

4.3.2 Performance Metrics

For a given labeling budget, we compare different baselines using the following key performance metrics:
Identification Probability, defined as the fraction of realizations where a method successfully identifies the
true best model of that realization, Label Efficiency, the reduction in number of labels (%) required to select
the best or a near-best model over all realizations, specifically one within δ vicinity of the best model, and
95th Percentile Accuracy Gap, represents the 95th percentile of the accuracy gap across all realizations, which
is measured relative to the accuracy of the best model in each realization.
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4.4 Experimental Results
We present our numerical results for each of the previously introduced performance metrics. Extended results
can be found in Appendix E. Our observations for each metric are summarized as follows:

4.4.1 Best Model Identification Probability

Figure 2: Best model identification probability of MODEL SELECTOR and the baselines on 18 model collections.
MODEL SELECTOR is capable of reducing the labeling cost by up to 94.15% for identifying the best model.

Figure 2 shows identification probabilities of MODEL SELECTOR compared to baselines across 18 model
collections, with labeling budgets extending until the best baseline (often UNCERTAINTY) reaches identification
probability 100% (see Appendix A for details). MODEL SELECTOR requires substantially fewer labels to reach
a high identification probability than the baseline methods. For instance, our method reduces the labeling
cost by up to 94.15% to identify the true best model with 100% identification probability, compared to the
best competing baseline (primarily UNCERTAINTY). Compared to methods on ImageNet model collections,
MODEL SELECTOR reduces the labeling cost by 68.91%, 69.35%, 70.56%, 71.56%, and 74.38% for MARGIN,
UNCERTAINTY, AMC, VMA, and RANDOM, respectively. We also examine a challenging scenario using the model
collections on the Drift dataset, where there is a significant distribution shift between the training data for
each model in the collection, and the model performs very differently on the unlabeled data pool. In such
a setting, RANDOM is considered the strongest baseline compared to selective sampling methods (Settles,
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2009; Ayed & Hayou, 2023). By learning the parameter ϵ in a self-supervised manner from model predictions,
MODEL SELECTOR automatically detects the drift and adjusts ϵ to 0.5, effectively mimicking random sampling
in these settings. Additionally, MODEL SELECTOR outperforms existing baselines on the WNLI dataset using
fewer than 70 examples, demonstrating its ability to identify the best model even on datasets with a limited
number of labels. Across different labeling cost, MODEL SELECTOR can consistently match the identification
probability of the baselines at a significantly lower labeling cost.

Dataset δ = 1% δ = 0.5% δ = 0.1%

CIFAR10-High ↓ 48.04% ↓ 58.40% ↓ 72.23%
CIFAR10-Low ↓ 21.07% ↓ 21.82% ↓ 25.67%
EmoContext ↓ 20.56% ↓ 34.19% ↓ 39.89%
PACS ↓ 62.73% ↓ 66.81% ↓ 68.62%
Drift ↑ 23.79% ↑ 7.96% ↑ 11.18%
ImageNet ↓ 53.62% ↓ 63.80% ↓ 69.81%
ImageNet Pytorch ↓ 40.94% ↓ 64.07% ↓ 73.36%
ImageNetV2 T-I ↑ 6.12% ↓ 49.12% ↓ 70.61%
ImageNetV2 T-0.7 ↓ 57.58% ↓ 57.79% ↓ 73.39%
ImageNetV2 M-F ↓ 48.18% ↓ 61.39% ↓ 56.72%
MRPC ↓ 72.41% ↓ 73.62% ↓ 74.54%
CoLA ↓ 45.89% ↓ 53.75% ↓ 71.01%
QNLI ↓ 46.88% ↓ 78.39% ↓ 85.75%
QQP ↑ 11.90% ↓ 26.55% ↓ 73.36%
SST-2 ↓ 7.89% ↓ 39.66% ↓ 93.33%
WNLI 0.00% 0.00% 0.00%
MNLI ↓ 69.42% ↓ 79.83% ↑ 3.95%
RTE ↓ 40.96% ↓ 40.96% ↓ 40.96%

Table 1: Label efficiency for near-best models: MODEL SELECTOR consistently reduces labeling cost to reach
the δ vicinity of the true best model compared to the best competing method.

4.4.2 Label Efficiency for Near-Best Models

We examine labeling efficiency from a different perspective. We evaluate the budget required to select the best
or a near-best model with accuracy within the δ vicinity of that of the best model. Specifically, we measure
the required number of labels where, in all realizations, the selected models are within 1%, 0.5%, and 0.1% of
the best model accuracy.

Table 1 shows the percentage reduction in the number of labels required by MODEL SELECTOR to select
a near-best model over all realizations. To reach the same δ vicinity of the accuracy of the best model,
our method requires fewer labels than the best competing baselines (mainly UNCERTAINTY and MARGIN).
Quantitatively, for MRPC, MODEL SELECTOR reduces the labeling cost by 72.41%, 73.62%, and 74.54% for δ
values of 1%, 0.5% and 0.1%, respectively. Moreover, our method approaches the performance of the near-best
method on ImageNetV2 for all model collections. Specifically, MODEL SELECTOR with δ = 0.1% reduces
the labeling cost by 70.61%, 73.39%, and 56.72% for ImageNetV2 T-I, ImageNetV2 T-0.7, and ImageNetV2
M-F, respectively. Our results show that MODEL SELECTOR is consistently more label-efficient, not only for
identifying the best model but also for selecting near-best models across different settings.

4.4.3 Robustness Analysis

We compute the 95-th percentile of the accuracy gap to assess the robustness of MODEL SELECTOR and perform
worst case scenario analysis for each method. Specifically, we calculate the accuracy gap between the selected
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Dataset MODEL SELECTOR RANDOM MARGIN UNCERTAINTY AMC VMA

Identification probability (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%)

CIFAR10-High 1.90/0.80/0.40/0.00 5.00/3.90/3.50/3.00 2.00/1.30/1.30/1.10 2.50/1.50/1.00/0.70 3.80/2.60/2.10/1.80 4.00/3.00/2.60/1.90
CIFAR10-Low 1.40/0.90/0.50/0.00 2.00/1.80/1.40/1.30 2.10/1.80/1.60/1.40 2.10/1.80/1.50/1.30 1.70/1.40/1.20/1.10 2.00/1.60/1.50/1.30
EmoContext 1.30/0.60/0.30/0.00 1.10/1.00/0.90/0.70 2.00/1.00/0.80/0.50 1.50/1.10/0.70/0.50 1.40/1.00/0.80/0.50 1.20/1.00/0.90/0.50
PACS 1.40/1.10/0.40/0.00 1.90/1.70/1.70/1.70 1.80/1.80/1.80/1.80 1.70/1.60/1.50/1.50 1.70/1.60/1.50/1.40 1.80/1.60/1.70/1.50
Drift 11.33/8.27/5.87/0.00 11.47/7.87/6.27/0.00 16.67/16.67/13.87/7.60 18.00/17.33/10.00/10.00 11.87/8.13/6.53/0.00 11.60/9.47/3.60/0.00
ImageNet 0.90/0.90/0.80/0.00 2.30/2.20/2.10/2.10 1.20/1.20/1.20/1.10 1.10/1.50/1.30/1.30 1.70/1.70/1.30/1.40 1.70/1.70/1.70/1.70
ImageNet Pytorch 0.80/0.50/0.20/0.00 3.70/3.30/3.00/2.60 1.30/0.90/0.80/0.70 1.00/1.00/1.00/0.80 2.20/1.90/1.30/1.20 3.60/2.40/1.90/1.20
ImageNetV2 T-I 1.20/0.70/0.10/0.00 4.30/4.50/3.00/2.20 1.30/1.30/1.10/0.50 1.70/1.40/0.60/0.60 3.50/2.80/1.90/1.80 3.10/2.40/2.30/1.60
ImageNetV2 T-0.7 1.00/0.50/0.20/0.00 4.20/3.70/3.50/2.50 1.50/1.30/1.10/1.10 1.50/1.50/1.30/1.00 2.60/2.40/1.80/1.30 2.80/2.70/2.30/1.80
ImageNetV2 M-F 0.90/0.40/0.30/0.00 4.10/2.60/2.60/2.60 1.10/1.00/0.90/0.60 1.10/1.10/0.90/0.60 3.10/1.10/1.10/0.90 3.70/1.70/1.60/1.60
MRPC 1.14/1.14/0.29/0.00 5.71/5.43/5.14/4.86 2.00/1.43/1.14/0.86 1.71/1.14/0.86/1.14 5.43/5.14/5.14/4.86 5.43/5.14/4.86/4.29
CoLA 0.88/0.62/0.25/0.00 3.38/3.37/3.37/3.12 1.12/0.88/1.12/1.37 1.00/0.88/1.12/1.37 2.62/2.50/2.50/2.37 2.50/2.50/2.38/2.25
QNLI 1.00/0.60/0.30/0.00 4.60/4.20/3.90/3.80 2.10/1.40/1.00/0.80 2.40/1.40/1.00/0.80 4.60/4.00/3.80/3.60 4.40/4.20/3.90/3.60
QQP 0.46/0.24/0.12/0.00 1.50/1.44/1.36/1.30 0.40/0.30/0.26/0.22 0.38/0.30/0.26/0.24 1.08/0.96/0.80/0.72 1.10/0.90/0.80/0.72
SST-2 0.40/0.27/0.13/0.00 6.80/6.40/6.27/6.40 0.40/0.40/0.40/0.40 0.40/0.40/0.40/0.40 5.87/5.60/5.60/5.47 5.73/5.47/5.33/5.33
WNLI 3.08/3.08/1.54/0.00 12.31/4.62/1.54/1.54 6.15/3.08/1.54/1.54 6.15/3.08/1.54/1.54 9.23/3.08/3.08/1.54 9.23/3.08/3.08/1.54
MNLI 1.00/0.80/0.40/0.00 4.70/4.30/3.90/2.90 1.20/1.20/1.10/1.00 1.10/1.10/1.10/1.00 4.40/4.00/3.20/2.70 4.00/4.30/3.70/2.90
RTE 10.40/10.00/4.40/0.00 22.40/21.20/16.40/11.20 21.20/16.80/17.20/6.80 20.80/16.80/19.20/7.20 22.80/20.80/16.80/10.80 22.00/19.20/14.80/10.80

Table 2: Robustness analysis: 95-th Percentile Accuracy Gap (%) at budget needed for MODEL SELECTOR to
reach identification probability 70%, 80%, 90%, and 100%. Compared to baselines, MODEL SELECTOR achieves
a smaller accuracy gap from the best model. Best method bolded; Next best underlined.

model and the true best model for all realizations and select the accuracy gap that is larger than 95% of
accuracy gaps across all realizations. We evaluate this for different budgets for each dataset, determined as
the budget required for MODEL SELECTOR to achieve 70%, 80%, 90%, and 100% identification probability.

As shown in Table 2, MODEL SELECTOR achieves significantly smaller accuracy gaps compared to baseline
methods. For example, the best competing methods (MARGIN and UNCERTAINTY) on the RTE dataset with
high disagreement among the model predictions, for identification probability of 70%, 80%, and 90%, return a
model with 20.80%, 16.80%, and 17.20% accuracy gaps, while MODEL SELECTOR returns models with accuracy
gaps that are 10.40%, 10.00%, and 0.40%. Quantitatively, these are 2×, 1.7×, and 43× smaller accuracy gaps.
Compared to each method for MNLI at identification probability 90%, MODEL SELECTOR selects the model
with 0.4% accuracy gap, while MARGIN, UNCERTAINTY, AMC, VMA, and RANDOM select models with accuracy
gaps of 1.1%, 1.1%, 3.2%, 3.7%, and 3.9%, which is 2.8×, 2.8×, 8×, and 9.8× larger compared to our method.
Even in settings with a small number of examples, such as WNLI, and datasets with a large number of classes,
such as ImageNet, MODEL SELECTOR outperforms the baselines. Specifically, when MODEL SELECTOR reaches
an identification probability of 100%, the best competing baselines still select models with accuracy gaps of
1% and 1.1% for WNLI and ImageNet, respectively.

Our findings highlight the robustness of MODEL SELECTOR for consistently returning a near-best model
even at its lowest performance.

5 Discussions
MODEL SELECTOR delivers competitive performance across various settings by capturing the discrepancy
between the candidate models and the true labels with just a single parameter ϵ. Additionally, it relies solely
on hard predictions, without requiring access to the internal workings of pretrained models. Our future
work will extend to settings where soft predictions are available and explore model selection with limited
demonstrations for generative models.
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Appendix

A Datasets and Model Collections
Table 3 summarizes the details of the 18 model collections used in Section 4. These collections vary in dataset
size, realization pool size, range of pretrained model accuracies, number of pretrained models, and number of
classes. The dataset sizes vary from as few as 71 examples for WNLI to 50, 000 for ImageNet. The number of
predicted classes ranges from binary classification tasks in the GLUE benchmark to 1, 000 classes for ImageNet.
We have experimented with settings involving as few as 8 models for EmoContext up to 118 models for WNLI.
We choose the realization pool size to be practical from a practitioner’s point of view; specifically, we avoid
labeling the entire test dataset. For most datasets, the realization pool size is 1, 000. For model collections on
ImageNet and ImageNetV2, we do not use larger realization pool sizes to enable comparison with baseline
methods, which otherwise would cause out-of-memory exceptions and have long execution times (mostly
VMA). For every model collection in Section 4 we evaluate for all budgets b up to the size of the realization
pool.

In Table 3 we also show the best found ϵ parameter across 1, 000 realizations for every model collection.
Further details on selection of ϵ can be found in Appendix D.

In conclusion, Table 3 highlights the diverse range of settings considered in our experiments.

Dataset Best ϵ across Dataset Realization Model Number of Number of
1,000 realizations size pool size accuracy models classes

CIFAR10-High 0.47 10,000 1,000 55% - 92% 80 10
CIFAR10-Low 0.47 10,000 1,000 40% - 70% 80 10
EmoContext 0.47 5509 1,000 88% - 92% 8 4
PACS 0.45 9991 1,000 73% - 94% 30 7
Drift 0.50 3600 1,000 25% - 60% 9 6
ImageNet 0.45 50,000 1,000 50% - 82% 102 1,000
ImageNet Pytorch 0.45 50,000 1,000 55% - 87% 114 1,000
ImageNetV2 T-I 0.46 10,000 1,000 58% - 89% 114 1,000
ImageNetV2 T-0.7 0.45 10,000 1,000 51% - 86% 114 1,000
ImageNetV2 M-F 0.48 10,000 1,000 43% - 81% 114 1,000
MRPC 0.37 408 350 31% - 91% 95 2
CoLA 0.45 1043 800 14% - 87% 109 2
QNLI 0.44 5463 1,000 16% - 90% 90 2
QQP 0.47 40430 5,000 8% - 85% 101 2
SST-2 0.36 872 750 7% - 97% 97 2
WNLI 0.47 71 65 8% - 59% 118 2
MNLI 0.43 9815 1,000 5% - 91% 82 3
RTE 0.39 277 250 41% - 88% 87 2

Table 3: Summary of the 18 model collections and datasets used in our experiments, including dataset sizes,
realization pool sizes, ranges of pretrained model accuracies, numbers of pretrained models, and numbers of
classes.

Figure 3 displays the accuracies of the models used in Section 4, evaluated on the entire dataset. Our
experiments encompass model collections ranging from those where the majority of models perform equally
well, such as QQP and CoLA, to settings where there is an equal distribution of high-performing and low-
performing models, like CIFAR10 and ImageNet. We also consider settings where most models do not perform
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Figure 3: Accuracies of the models used in Section 4, evaluated on the entire dataset. Our experiments cover
different scenarios across a wide range of model accuracies.

well and have high accuracy, such as Drift and RTE.
This demonstrates that we capture a wide range of possible model accuracies without making any

assumptions about their distribution.

B Baselines
To evaluate MODEL SELECTOR we compare against random sampling (RANDOM), as well as uncertainty
sampling (UNCERTAINTY) (Dagan & Engelson, 1995) and margin sampling (MARGIN) (Seung et al., 1992;
Freund et al., 1997). Additionally, we use the variance minimization approach (VMA) (Matsuura & Hara,
2023) and active model comparison (AMC) (Sawade et al., 2012).

Uncertainty Sampling. We adapt the method of Dagan & Engelson (1995) to our context. For each example,
we create a probability distribution over the possible classes by counting predictions of all models. We sort
the examples according to the probability distribution with maximal uncertainty, that is, entropy. Then we
select b examples with highest entropy. Note, that this is a non-adaptive baseline, meaning after querying a
label it does not change the decision for the next example.

Margin Sampling. In a similar manner to UNCERTAINTY, we adapt the method for margin sampling, as
proposed by Seung et al. (1992); Freund et al. (1997). The MARGIN method selects examples with the largest
margin, where margin is defined as the difference between the highest probability of a certain class and the
second-highest probability of a different class. As for UNCERTAINTY, it selects b examples with largest margin
in a non-adaptive manner.
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Active Model Comparison. We implement the Active Comparison of Predictive Models method proposed by
Sawade et al. (2012). AMC samples from a distribution that maximizes the power of a statistical test, and with
that minimizes the likelihood of selecting a worse model. While AMC is originally designed to compare the
risks of two predictive models within a fixed labeling budget, we extend the approach to evaluate all possible
pairs of pretrained models, allowing for the selection of the best model within the given budget.

Variance Minimization Approach. We implement the algorithm proposed by Matsuura & Hara (2023).
VMA samples examples such that the variance of the estimated risk is minimized. Although VMA is designed
for active model selection, it assumes to have a test loss estimator. Specifcally, it requires softmax predictions
for each example. However, in our setup models are treated as black boxes. Therefore, instead of softmax
predictions we use probability distribution over the possible classes from counting predictions of all models.

It is important to note that none of these methods are specifically tailored for our setting of pretrained
model selection with limited labels. Nonetheless, we adapt these methods as baseline comparisons within this
newly formalized model selection framework.

C Related Work
Optimal Information Gathering How to gather information optimally has been studied from different angles
and for different settings. The majority of works do not consider the model selection setting. For example,
information gathering has been explored for active learning (MacKay, 1992; Dasgupta & Langford, 2011;
Ding et al., 2023, 2024), experimental design (Lindley, 1956; Fedorov, 2013), reinforcement learning (Treven
et al., 2023), evaluation of (stochastic) Boolean functions (Kaplan et al., 2005; Deshpande et al., 2014),
active hypothesis testing (Chernoff, 1992; Nowak, 2009; Naghshvar & Javidi, 2013), channel coding with
feedback (Horstein, 1966; Burnashev, 1976), and feature selection (Covert et al., 2023). Furthermore,
Hübotter et al. (2024) discuss how to optimally gather information most efficiently. Smith & Gal (2018)
explore modes of failure for measuring uncertainty in adversarial settings. Emmenegger et al. (2024) discuss
gathering information in the sequential setting as we do, yet not specifically for model selection. In the
context of minimizing epistemic uncertainty about an unknown target, several methods utilize the most
informative selection policy using mutual information for active learning setting (Gal et al., 2017; Houlsby
et al., 2011; Nguyen et al., 2021; Hübotter et al., 2024; Kirsch, 2024). Our work falls into this category. In
particular, our motivation is to exploit the enjoyable properties of the most informative selection policy in
the binary symmetric channel (Chen et al., 2015) for model selection under the uncertainty of the channel,
where we consider the channel model as our epistemic uncertainty model. The provable near-optimality
guarantees therein generally apply to our case. In instances not, our learned ϵ would be highest (simply 0.5),
indicating that simple random sampling should be the most competitive baseline. Furthermore, works can be
categorized based on the assumptions of underlying noise into the noise-free settings (Freund et al., 1997;
Kosaraju et al., 1999; Dasgupta, 2004; Chakaravarthy et al., 2007; Golovin & Krause, 2011) and works with
noisy observations (Balcan et al., 2006; Hanneke, 2007; Gonen et al., 2013; Balcan et al., 2007; Tsybakov,
2004; Hanneke & Yang, 2015). Our work falls into the latter category. Many works have analyzed active
learning with noisy observations, similarly to our setting with noisy prediction estimates for the pool-based
setting. Yet, they limit their theoretical insights to limited hypotheses classess (Balcan et al., 2007; Gonen
et al., 2013), and restricted noise settings (Tsybakov, 2004; Hanneke & Yang, 2015). In all of the previous
studies, mutual information repeats itself as a key concept for both label-efficient model selection and optimal
information gathering. Chattopadhyay et al. provide theoretical bounds on using greedy mutual information,
and others show it in practice (Treven et al., 2023; Chen et al., 2015). In conclusion, our work falls into the
category of works for sequential pool-based noisy information gathering by maximizing mutual information
with provable near-optimality guarantees.
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D The Parameter ϵ

In this chapter we present the results for choosing the ϵ parameter. We select the best ϵ as described in
Section 3.3, that is, by constructing the noisy oracle and observing the identification probability for different ϵ
values.

D.1 Selecting the Parameter ϵ

In Figure 5 we show the identification probability (see Section 4.4.1) of MODEL SELECTOR with different ϵ
values on 18 model collections using the noisy labels. For comparison, in Figure 4 we show the same ranges
of ϵ using the oracle labels. Both figures do not visualize the entire realization, and are cut at budgets for
demonstrations. Figures 4 and 5 confirm our statement that appropriate values for ϵ lie in range [0.35, 0.49].
Smaller values than ϵ = 0.35 lead to overfitting (see Section 3.3). When comparing model collections that
use noisy labels with those that use oracle labels, we find that, fewer labels are needed to achieve a high
identification probability at the same ϵ values. For example, ϵ = 0.45 requires fewer labels to reach high
identification probability than ϵ = 0.35 for CIFAR10-Low in both Figure 5 and Figure 4. Also, we observe
that for all ImageNet model collections MODEL SELECTOR with ϵ = 0.49 requires more labels to reach high
identification probabilities when compared to smaller ϵ values using both noisy and oracle labels. In addition,
this experiment demonstrates the robustness of MODEL SELECTOR to different ϵ values. Quantitatively, QQP
and QNLI demonstrate that all observed ϵ values (0.35, 0.40, 0.45, 0.49) achieve high identification probability
requiring approximately equal amount of labels from the entire realization.

Having identified the ϵ value ranges that reduce the labeling cost required to achieve the same identification
probability, we perform the same experiment using more finely grained ϵ ranges. In Figure 6 and Figure 7 we
show the identification probability of MODEL SELECTOR with finely grained ϵ values on 18 model collections
using the noisy labels and oracle labels, respectively. Figures 6 and 7 further show the robustness of MODEL

SELECTOR to ϵ values. Both from noisy labels and oracle labels one can see that MODEL SELECTOR with
ϵ ∈ [0.45, 0.49] reaches high identification probability with approximately the same amount of required labels
for both CIFAR10 model collections, CoLA, and QQP. The same holds for ϵ ∈ [0.41, 0.45] on MNLI and QNLI
with both noisy and oracle labels.

As discussed in Section 4 for Drift model collection, MODEL SELECTOR automatically adjusts ϵ to 0.5,
effectively mimicking random sampling. MODEL SELECTOR is capable detecting that using only noisy labels.

When the figures do not clearly indicate which ϵ value has the highest reduction in labeling cost, we
calculate it numerically to find the best ϵ values. Selected best ϵ values for every model collection using noisy
labels and oracle labels can be found in Table 4. Quantitatively, our estimation of ϵ has an error margin of
only 0.01 compared to the values obtained using the oracle labels.

D.2 Choosing ϵ with Initial Oracle Labels
As discussed in Section 3.3, it is a standard practice to allocate an initial budget for exploration (Lewis, 1995;
McCallum et al., 1998; Zhang & Chen, 2002; Hoi et al., 2006; Zhan et al., 2022). In Figure 8 and Figure 9 we
show how identification probability changes as we increase the number of oracle labels for RTE and WNLI,
respectively. For both RTE and WNLI the identification probability differs when evaluated on noisy labels and
on oracle labels. As the number of oracle labels increases, the identification probability increasingly resembles
that obtained when evaluated entirely on oracle labels. However, the choice for best ϵ remains the same for
both datasets when evaluated on noisy labels and on oracle labels, supporting the claim we do not any initial
labeled data.
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Figure 4: Best model identification probability of MODEL SELECTOR for ϵ ∈ {0.35, 0.40, 0.45, 0.49, 0.50} on 18
model collections using oracle labels.
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Figure 5: Best model identification probability of MODEL SELECTOR for ϵ ∈ {0.35, 0.40, 0.45, 0.49, 0.50} on 18
model collections using noisy labels.
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Figure 6: Best model identification probability of MODEL SELECTOR for finely grained ϵ values on 18 model
collections using oracle labels.
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Figure 7: Best model identification probability of MODEL SELECTOR for finely grained ϵ values on 18 model
collections using noisy labels.
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Dataset ϵ on noisy labels ϵ on oracle labels

CIFAR10-High 0.47 0.47
CIFAR10-Low 0.47 0.47
EmoContext 0.47 0.46
PACS 0.45 0.45
Drift 0.50 0.50
ImageNet 0.45 0.46
ImageNet Pytorch 0.45 0.46
ImageNetV2 T-I 0.46 0.45
ImageNetV2 T-0.7 0.45 0.45
ImageNetV2 M-F 0.48 0.47
MRPC 0.37 0.36
CoLA 0.45 0.45
QNLI 0.44 0.45
QQP 0.47 0.47
SST-2 0.36 0.36
WNLI 0.47 0.47
MNLI 0.43 0.44
RTE 0.39 0.39

Table 4: Selected ϵ using noisy labels compared to selected ϵ using oracle labels. Our estimation of ϵ has an
error margin of only 0.01 compared to the values obtained using the ground truth oracle.
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Figure 8: Best model identification probability of MODEL SELECTOR for ϵ ∈ [0.35, 39] on RTE dataset, as the
number of oracle labels increases.
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Figure 9: Best model identification probability of MODEL SELECTOR for ϵ ∈ [0.45, 49] on WNLI dataset, as the
number of oracle labels increases.
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D.3 Can We Use Noisy Labels to Identify the Best Model?
Although we can use the noisy oracle, constructed as explained in Section 3.3, to choose the best ϵ, we cannot
use it to select the best model. Table 5 shows the accuracy gap between the best model evaluated using the
noisy oracle and the true best model. For all model collections, this accuracy gap is significantly greater than
0%. For example, the gap reaches up to 15.93% for RTE.

Dataset Best model accuracy gap

CIFAR10-High 4.28%
CIFAR10-Low 2.64%
EmoContext 0.96%
PACS 1.56%
Drift 13.78%
ImageNet 3.49%
ImageNet Pytorch 4.47%
ImageNetV2 T-I 4.53%
ImageNetV2 T-0.7 5.72%
ImageNetV2 M-F 7.27%
MRPC 1.29%
CoLA 5.22%
QNLI 3.25%
QQP 1.08%
SST-2 3.93%
WNLI 3.49%
MNLI 3.48%
RTE 15.93%

Table 5: Accuracy gaps between the best models evaluated using the noisy oracle and the true best models
across all model collections. Labels are required to identify the best model.

E Extended Results
In this section, we extend the results from Section 4.

Table 6 presents the label efficiency for near-best models, as explained in Section 4.4.2, considering
larger values of δ. To achieve accuracy within the same δ vicinity of the best model, our method requires
fewer labels than the best competing baselines (mostly UNCERTAINTY and MARGIN). For ImageNetV2 T-0.7,
MODEL SELECTOR reduces the labeling cost by 64.71%, 9.09%, and 16.67% for δ values of 5%, 3%, and
2%, respectively. However, by examining the distribution of model accuracies in Figure 3, we observe that
many models are within 5%, 3%, and 2% of the best model’s accuracy. Therefore, selecting a model within
these vicinities cannot truly be considered selecting a near-best model, and we present these results for
completeness. Importantly, as δ decreases, MODEL SELECTOR achieves greater reductions in labeling costs.

Table 7 extends the robustness analysis from Section 4.4.3. Instead of calculating the 95th percentile of
the accuracy gap, we report the 90th percentile of the accuracy gap across all realizations. As previously, we
evaluate this for different budgets for each dataset, determined as the budget required for MODEL SELECTOR to
achieve 70%, 80%, 90%, and 100% identification probability. As shown in Table 7, MODEL SELECTOR achieves
significantly smaller accuracy gaps compared to baseline methods. For example, the best competing methods
(MARGIN and UNCERTAINTY) on the RTE dataset with high disagreement among the model predictions, for
identification probability of 70%, and 80%, return a model with 15.60%, and 14.40% accuracy gaps, while
MODEL SELECTOR returns models with accuracy gaps that are 8.40%, and 6.80%. Quantitatively, these are
1.9× and 2.1× smaller accuracy gaps. Furthermore, when MODEL SELECTORs 90th percentile accuracy gaps
become 0%, the best competing baselines still select models with significant accuracy gaps. For example,
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Dataset δ = 5% δ = 3% δ = 2%

CIFAR10-High ↑ 19.47% ↓ 20.99% ↓ 25.81%
CIFAR10-Low ↓ 8.18% ↓ 15.79% ↓ 19.29%
EmoContext ↑ 16.67% ↑ 27.27% ↑ 5.06%
PACS ↑ 17.39% ↑ 27.16% ↓ 49.80%
Drift ↑ 15.52% ↑ 16.09% ↑ 12.93%
ImageNet ↓ 35.00% ↑ 67.35% ↑ 0.62%
ImageNet Pytorch ↑ 33.33% ↑ 10.94% ↑ 11.94%
ImageNetV2 T-I ↑ 18.75% ↓ 3.23% ↓ 18.75%
ImageNetV2 T-0.7 ↓ 64.71% ↓ 9.09% ↓ 16.67%
ImageNetV2 M-F ↑ 12.50% ↓ 28.09% ↓ 13.48%
MRPC ↑ 2.90% ↑ 5.33% ↑ 2.60%
CoLA ↑ 32.50% ↓ 9.60% ↓ 41.99%
QNLI ↓ 18.97% ↓ 9.38% ↓ 42.52%
QQP ↑ 41.73% ↑ 62.58% ↑ 35.22%
SST-2 ↑ 59.26% ↑ 14.81% ↓ 3.57%
WNLI ↓ 1.59% ↓ 1.59% 0.00%
MNLI ↓ 29.27% ↑ 54.74% ↑ 10.56%
RTE ↓ 40.96% ↓ 40.96% ↓ 40.96%

Table 6: Label efficiency for near-best models: MODEL SELECTOR consistently reduces labeling cost to reach
the δ vicinity of the true best model compared to the best competing method as δ decreases.

MARGIN and UNCERTAINTY select a model with 1.54% accuracy gap for CoLA, and 6.40% accuracy gap for RTE.
We confirm our findings highlight the robustness of MODEL SELECTOR in consistently returning the

near-best model, even at its lowest performance.

Dataset MODEL SELECTOR RANDOM MARGIN UNCERTAINTY AMC VMA

Identification probability (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%) (70%/80%/90%/100%)

CIFAR10-High 1.00/0.40/0.10/0.00 4.20/2.90/2.60/2.10 1.30/0.70/0.80/0.80 1.50/0.90/0.60/0.40 3.10/1.80/1.60/1.30 3.30/2.10/1.70/1.30
CIFAR10-Low 1.00/0.50/0.10/0.00 1.40/1.20/1.00/0.90 1.60/1.40/1.30/1.00 1.60/1.40/1.20/0.90 1.30/1.00/0.80/0.70 1.40/1.10/1.00/0.80
EmoContext 0.60/0.30/0.10/0.00 0.80/0.70/0.60/0.40 1.00/0.60/0.50/0.30 0.90/0.70/0.50/0.30 0.90/0.60/0.50/0.40 0.80/0.60/0.50/0.40
PACS 1.10/0.60/0.10/0.00 1.50/1.40/1.30/1.30 1.50/1.50/1.50/1.50 1.30/1.30/1.20/1.20 1.40/1.30/1.20/1.10 1.50/1.40/1.30/1.20
Drift 8.67/6.40/2.93/0.00 8.53/6.40/3.87/0.00 15.73/15.73/12.80/7.07 16.93/16.40/9.33/9.20 9.47/6.80/4.00/0.00 9.60/5.87/0.00/0.00
ImageNet 0.70/0.70/0.20/0.00 2.00/1.60/1.70/1.70 0.80/0.80/0.80/0.70 0.90/1.10/1.10/0.90 1.30/1.30/1.10/1.10 1.40/1.40/1.50/1.40
ImageNet Pytorch 0.50/0.30/0.20/0.00 2.80/3.00/2.50/2.10 1.00/0.60/0.60/0.50 0.80/0.80/0.70/0.50 1.40/1.00/0.90/0.80 2.60/2.00/1.30/0.90
ImageNetV2 T-I 1.00/0.30/0.00/0.00 3.50/3.20/2.20/1.80 1.00/1.10/0.70/0.40 1.10/0.90/0.50/0.20 2.70/2.20/1.80/1.20 2.40/1.60/1.80/1.00
ImageNetV2 T-0.7 0.70/0.30/0.00/0.00 3.80/2.90/2.90/1.90 1.10/0.90/0.80/0.60 1.10/1.00/0.90/0.70 2.20/1.50/1.20/0.80 2.00/1.40/1.50/1.20
ImageNetV2 M-F 0.60/0.30/0.10/0.00 3.30/1.50/1.50/1.10 0.90/0.70/0.50/0.40 0.90/0.60/0.60/0.40 2.50/0.90/0.90/0.80 2.70/1.50/1.10/0.90
MRPC 0.86/0.57/0.29/0.00 4.86/4.57/4.00/4.00 1.14/0.86/0.86/0.86 1.14/0.86/0.86/0.86 4.57/4.29/4.00/4.00 4.57/4.29/4.00/3.43
CoLA 0.62/0.38/0.12/0.00 2.87/2.75/2.75/2.62 0.75/0.75/0.87/1.12 0.75/0.75/0.88/1.12 2.25/2.25/2.12/2.00 2.12/2.13/2.00/1.88
QNLI 0.70/0.40/0.10/0.00 4.00/3.70/3.50/3.30 1.40/0.90/0.70/0.60 1.90/0.90/0.60/0.60 4.20/3.60/3.30/3.20 3.90/3.60/3.30/3.00
QQP 0.32/0.14/0.02/0.00 1.36/1.24/1.16/1.10 0.28/0.18/0.16/0.14 0.28/0.18/0.16/0.14 0.88/0.78/0.60/0.54 0.90/0.76/0.66/0.54
SST-2 0.27/0.13/0.00/0.00 5.87/5.73/5.20/5.20 0.40/0.40/0.40/0.40 0.40/0.40/0.40/0.40 4.53/4.53/4.13/4.13 4.40/4.27/4.13/4.00
WNLI 3.08/1.54/1.54/0.00 9.23/3.08/1.54/1.54 4.62/1.54/1.54/0.00 6.15/1.54/1.54/0.00 6.15/3.08/1.54/1.54 6.15/3.08/1.54/0.00
MNLI 0.70/0.40/0.10/0.00 3.30/3.00/2.70/1.90 0.90/0.90/0.90/0.80 1.00/0.90/0.80/0.80 3.20/2.90/2.20/1.80 3.20/3.30/2.60/2.10
RTE 8.40/6.80/0.00/0.00 18.80/17.20/12.00/10.00 16.00/15.60/15.60/6.40 15.60/15.60/15.60/6.40 19.20/15.60/11.60/10.00 18.40/14.40/11.20/10.00

Table 7: Robustness analysis: 90-th Percentile Accuracy Gap (%) at budget needed for MODEL SELECTOR to
reach identification probability 70%, 80%, 90%, and 100%. Compared to baselines, MODEL SELECTOR achieves
a smaller accuracy gap from the best model. Best method bolded; Next best underlined.

F Scaling and Computation Cost
All methods, including MODEL SELECTOR and the baseline algorithms, are implemented in Python and use the
following Python libraries: Pandas, Matplotlib, Numpy, Scipy, Torch, HuggingFace, and Seaborn. To optimize
runtime, we execute the realizations in parallel on a 128-core cluster.

The total runtime for the baseline methods across all realizations ranges from 60 seconds (for WNLI) to 30
hours (for ImageNet) on the cluster. MODEL SELECTOR execution times range from 1.1 seconds (for WNLI) to
61.2 minutes (for ImageNet).
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