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ABSTRACT
We propose COSMA: a parallel matrix-matrix multiplication algo-

rithm that is near communication-optimal for all combinations of

matrix dimensions, processor counts, and memory sizes. The key

idea behind COSMA is to derive an optimal (up to a factor of 0.03%

for 10MB of fast memory) sequential schedule and then parallelize

it, preserving I/O optimality. To achieve this, we use the red-blue

pebble game to precisely model MMM dependencies and derive

a constructive and tight sequential and parallel I/O lower bound

proofs. Compared to 2D or 3D algorithms, which fix processor de-

composition upfront and then map it to the matrix dimensions, it

reduces communication volume by up to

√
3 times. COSMA outper-

forms the established ScaLAPACK, CARMA, and CTF algorithms

in all scenarios up to 12.8x (2.2x on average), achieving up to 88%

of Piz Daint’s peak performance. Our work does not require any

hand tuning and is maintained as an open source implementation.

1 INTRODUCTION
Matrix-matrix multiplication (MMM) is one of the most fundamen-

tal building blocks in scientific computing, used in linear algebra

algorithms [13, 15, 41], (Cholesky and LU decomposition [41], eigen-

value factorization [13], triangular solvers [15]), machine learn-

ing [6], graph processing [4, 8, 18, 36, 43, 51], computational chem-

istry [21], and others. Thus, accelerating MMM routines is of great

significance for many domains. In this work, we focus on mini-

mizing the amount of transferred data in MMM, both across the

memory hierarchy (vertical I/O) and between processors (horizontal
I/O, aka “communication”)

1
.

The path to I/O optimality of MMM algorithms is at least 50 years

old. The first parallel MMM algorithm is by Cannon [10], which

works for square matrices and square counts of processors. Subse-

quent works [24, 25] generalized theMMMalgorithm to rectangular

matrices, different processor decompositions, and communication

patterns. PUMMA [17] package generalized previousworks to trans-

posed matrices and different data layouts. SUMMA algorithm [55]

further extended it by optimizing the communication, introducing

pipelining and computation-communication overlap. This is now a

state-of-the-art so-called 2D algorithm (it decomposes processors

in a 2D grid) used e.g., in ScaLAPACK library [14].

Agarwal et al. [1] showed that in a presence of extra memory,

one can do better and introduces a 3D processor decomposition.

The 2.5D algorithm by Solomonik and Demmel [52] effectively in-

terpolates between those two results, depending on the available

memory. However, Demmel et al. showed that algorithms optimized

for square matrices often perform poorly when matrix dimensions

vary significantly [22]. Such matrices are common in many relevant

1
We also focus only on “classical” MMM algorithms which perform n3

multiplications

and additions. We do not analyze Strassen-like routines [53], as in practice they are

often slower [19].
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Figure 1: Percentage of peak flop/s across the experiments ranging from 109 to 18,432 cores
achieved by COSMA and the state-of-the-art libraries (Sec. 9).
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Figure 2: Illustratory evolution of MMM algorithms reaching the I/O lower bound.

areas, for example in machine learning [59, 60] or computational

chemistry [44, 48]. They introduced CARMA [22], a recursive algo-

rithm that achieves asymptotic lower bounds for all configurations

of dimensions and memory sizes. This evolution for chosen steps

is depicted symbolically in Figure 2.

Unfortunately, we observe several limitations with state-of-the

art algorithms. ScaLAPACK [14] (an implementation of SUMMA)

supports only the 2D decomposition, which is communication–

inefficient in the presence of extra memory. Also, it requires a user

to fine-tune parameters such as block sizes or a processor grid size.

CARMA supports only scenarios when the number of processors

is a power of two [22], a serious limitation, as the number of pro-

cessors is usually determined by the available hardware resources.

Cyclops Tensor Framework (CTF) [49] (an implementation of the

2.5D decomposition) can utilize any number of processors, but its

decompositions may be far from optimal (§ 9). We also emphasize

that asymptotic complexity is an insufficient measure of practical per-
formance. We later (§ 6.2) identify that CARMA performs up to

√
3

more communication. Our observations are summarized in Table 1.

Their practical implications are shown in Figure 1, where we see

that all existing algorithms perform poorly for some configurations.

In this work, we present COSMA (Communication Optimal S-

partition-based Matrix multiplication Algorithm): an algorithm

that takes a new approach to multiplying matrices and alleviates

the issues above. COSMA is I/O optimal for all combinations of
parameters (up to the factor of

√
S/(
√
S + 1−1), where S is the size of

the fast memory
2
). The driving idea is to develop a general method

2
Throughout this paper we use the original notation from Hong and Kung to denote

the memory size S . In literature, it is also common to use the symbol M [2, 3, 33].

1
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2D [55] 2.5D [52] recursive [22] COSMA (this work)

Input: User–specified grid Available memory Available memory, matrix dimensions Available memory, matrix dimensions

Step 1 Splitm and n Splitm, n, k Split recursively the largest dimension Find the optimal sequential schedule

Step 2 Map matrices to processor grid Map matrices to processor grid Map matrices to recursion tree Map sequential domain to matrices

� Requires manual tuning

� Asymptotically more comm.

� Optimal form = n

� Inefficient form ≪ n or n ≪m

� Inefficient for some p

� Asymptotically optimal for allm, n, k, p

� Up to
√
3 times higher comm. cost

� p must be a power of 2

� Optimal for allm, n, k

� Optimal for all p

�� Best time-to-solution

Table 1: Intuitive comparison between the COSMA algorithm and the state-of-the-art 2D, 2.5D, and recursive decompositions.C = AB, A ∈ Rm×k , B ∈ Rk×n

of deriving I/O optimal schedules by explicitly modeling data reuse

in the red-blue pebble game. We then parallelize the sequential

schedule, minimizing the I/O between processors, and derive an

optimal domain decomposition. This is in contrast with the other

discussed algorithms, which fix the processor grid upfront and then

map it to a sequential schedule for each processor. We outline the

algorithm in § 3. To prove its optimality, we first provide a new

constructive proof of a sequential I/O lower bound (§ 5.2.7), then

we derive the communication cost of parallelizing the sequential

schedule (§ 6.2), and finally we construct an I/O optimal parallel

schedule (§ 6.3). The detailed communication analysis of COSMA,

2D, 2.5D, and recursive decompositions is presented in Table 3. Our

algorithm reduces the data movement volume by a factor of up

to

√
3 ≈ 1.73x compared to the asymptotically optimal recursive

decomposition and up to max{m,n,k} times compared to the 2D

algorithms, like Cannon’s [39] or SUMMA [55].

Our implementation enables transparent integration with the

ScaLAPACK data format [16] and delivers near-optimal computa-

tion throughput. We later (§ 7) show that the schedule naturally ex-

presses computation–communication overlap, enabling even higher

speedups using Remote Direct Memory Access (RDMA). Finally,

our I/O-optimal approach is generalizable to other linear algebra

kernels. We provide the following contributions:

• We propose COSMA: a distributedMMMalgorithm that is nearly-

optimal (up to the factor of

√
S/(
√
S + 1− 1)) for any combination

of input parameters (§ 3).
• Based on the red-blue pebble game abstraction [34], we provide

a new method of deriving I/O lower bounds (Lemma 4), which

may be used to generate optimal schedules (§ 4).

• Using Lemma 4, we provide a new constructive proof of the

sequential MMM I/O lower bound. The proof delivers constant

factors tight up to

√
S/(
√
S+ − 1)(§ 5).

• We extend the sequential proof to parallel machines and provide

I/O optimal parallel MMM schedule (§ 6.3).

• We reduce memory footprint for communication buffers and

guarantee minimal input reshuffling by using a blocked data

layout (§ 7.6) and a static buffer pre-allocation (§ 7.5), providing

compatibility with the ScaLAPACK format.

• We evaluate the performance of COSMA, ScaLAPACK, CARMA,

and CTF on the CSCS Piz Daint supercomputerfor an extensive

selection of problem dimensions, memory sizes, and numbers of

processors, showing significant I/O reduction and the speedup

of up to 8.3 times over the second-fastest algorithm (§ 9).

2 BACKGROUND
We first describe our machine model (§ 2.1) and computation model

(§ 2.2). We then define our optimization goal: the I/O cost (§ 2.3).

We describe used symbols in Table 2.

2.1 Machine Model
We model a parallel machine with p processors, each with local

memory of size S words. A processor can send and receive from

any other processor up to S words at a time. To perform any com-

putation, all operands must reside in a processor’ local memory. If

shared memory is present, then it is assumed that it has infinite

capacity. A cost of transferring a word from the shared to the local

memory is equal to the cost of transfer between two local memories.

2.2 Computation Model
Wenow briefly specify amodel of a general computation; we use this

model to derive the theoretical I/O cost in both the sequential and

parallel setting. An execution of an algorithm is modeled with the

computational directed acyclic graph (CDAG)G = (V ,E) [11, 28, 46].
A vertex v ∈ V represents one elementary operation in the given

computation. An edge (u,v) ∈ E indicates that an operation v
depends on the result of u. A set of all immediate predecessors (or

successors) of a vertex are its parents (or children). Two selected

subsets I ,O ⊂ V are inputs and outputs, that is, sets of vertices that
have no parents (or no children, respectively).

Red-Blue Pebble Game Hong and Kung’s red-blue pebble game

[34] models an execution of an algorithm in a two-level memory

structure with a small-and-fast as well as large-and-slow memory.

A red (or a blue) pebble placed on a vertex of a CDAG denotes that

the result of the corresponding elementary computation is inside

the fast (or slow) memory. In the initial (or terminal) configuration,

only inputs (or outputs) of the CDAG have blue pebbles. There can

be at most S red pebbles used at any given time. A complete CDAG
calculation is a sequence of moves that lead from the initial to the

terminal configuration. One is allowed to: place a red pebble on any

vertex with a blue pebble (load), place a blue pebble on any vertex

with a red pebble (store), place a red pebble on a vertex whose par-

ents all have red pebbles (compute), remove any pebble, red or blue,

from any vertex (free memory). An I/O optimal complete CDAG

calculation corresponds to a sequence of moves (called pebbling of

a graph) which minimizes loads and stores. In the MMM context, it

is an order in which all n3 multiplications are performed.

2.3 Optimization Goals
Throughout this paper we focus on the input/output (I/O) cost of
an algorithm. The I/O cost Q is a total number of words trans-

ferred during the execution of a schedule. On a sequential or shared

memory machine equipped with small-and-fast and slow-and-big

memories, these transfers are load and store operations from and

to the slow memory (also called the vertical I/O). For a distributed
machine with a limited memory per node, the transfers are commu-

nication operations between the nodes (also called the horizontal
I/O). A schedule is I/O optimal if it minimizes the I/O cost among all

schedules of a given CDAG. We also model a latency cost L, which
is a maximum number of messages sent by any processor.

2
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Step 2: Map computation to
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Figure 3: Domain decomposition using p = 8 processors. In the scenario (a), a straightforward 3D

decomposition divides every dimension in p1/3 = 2. In the scenario (b), COSMA starts by finding a
near optimal sequential schedule and then parallelizes it minimizing crossing data reuseVR,i (§ 5).
The total communication volume is reduced by 17% compared to the former strategy.

2.4 State-of-the-Art MMM Algorithms
Here we briefly describe strategies of the existing MMM algorithms.

Throughout the whole paper, we consider matrix multiplication

C = AB, whereA ∈ Rm×k ,B ∈ Rk×n ,C ∈ Rm×n , wherem, n, and k
arematrix dimensions. Furthermore, we assume that the size of each

element of matrices is one word, and that S < min{mn,mk,nk},
that is, none of the matrices fits into single processor’s fast memory.

We compare our algorithm with the 2D, 2.5D, and recursive de-

compositions (we select parameters for 2.5D to also cover 3D). We

assume a square processor grid [
√
p,
√
p, 1] for the 2D variant, analo-

gously to Cannon’s algorithm [10], and a cubic grid [
√
p/c,

√
p/c, c]

for the 2.5D variant [52], where c is the amount of the “extra” mem-

ory c = pS/(mk +nk). For the recursive decomposition, we assume

that in each recursion level we split the largest dimension m,n,
or k in half, until the domain per processor fits into memory. The

detailed complexity analysis of these decompositions is in Table 3.

We note that ScaLAPACK or CTF can handle non-square decompo-

sitions, however they create different problems, as discussed in § 1.

Moreover, in § 9 we compare their performance with COSMA and

measure significant speedup in all scenarios.

3 COSMA: HIGH-LEVEL DESCRIPTION
COSMA decomposes processors by parallelizing the near optimal

sequential schedule under given constraints: (1) equal work distri-

bution and (2) memory size per processor. Such a local sequential

schedule is independent of matrix dimensions. Thus, intuitively,

instead of dividing a global domain among p processors (the top-
down approach), we start from deriving a near I/O optimal sequential
schedule. We then parallelize it, minimizing the I/O and latency

costs Q , L (the bottom-up approach); Figure 3 presents more details.

COSMA is sketched in Algorithm 1. In Line 1 we derive a

sequential schedule, which consists of series of a×a outer products.
(Figure 4 b). In Line 2, each processor is assigned to compute b
of these products, forming a local domain D (Figure 4 c), that is

eachD contains a ×a ×b vertices (multiplications to be performed

- the derivation of a and b is presented in § 6.3). In Line 3, we

find a processor grid G that evenly distributes this domain by the

matrix dimensionsm,n, and k . If the dimensions are not divisible

by a or b, this function also evaluates new values of aopt and bopt
by fitting the best matching decomposition, possibly not utilizing

some processors (§ 7.1, Figure 4 d-f). The maximal number of idle

processors is a tunable parameter δ . In Line 5, we determine the

initial decomposition of matrices A,B, and C to the submatrices

Al ,Bl ,Cl that are local for each processor. COSMAmay handle any

initial data layout, however, an optimal block-recursive one (§ 7.6)

may be achieved in a preprocessing phase. In Line 6, we compute

the size of the communication step, that is, how many of bopt
outer products assigned to each processor are computed in a single

round, minimizing the latency (§ 6.3). In Line 7 we compute the

number of sequential steps (Lines 8–11) in which every processor:

(1) distributes and updates its local data Al and Bl among the grid

G (Line 9), and (2) multipliesAl and Bl (Line 10). Finally, the partial
results Cl are reduced over G (Line 12).

I/O Complexity of COSMA Lines 2–7 require no communi-

cation (assuming that the parametersm,n,k,p, S are already dis-

tributed). The loop in Lines 8-11 executes

⌈
2ab/(S − a2)

⌉
times. In

Line 9, each processor receives |Al | + |Bl | elements. Sending the

partial results in Line 12 adds a2 communicated elements. In § 6.3

we derive the optimal values for a and b, which yield a total of

min

{
S + 2 · mnk

p
√
S
, 3

(
mnk
P

)
2/3 }

elements communicated.

Algorithm 1 COSMA

Input: matrices A ∈ Rm×k , B ∈ Rk×n ,
number of processors: p , memory size: S , computation-I/O tradeoff ratio ρ

Output: matrix C = AB ∈ Rm×n
1: a ← F indSeqSchedule(S,m, n, k, p) ◃ sequential I/O optimality (§ 5)

2: b ← Parallel izeSched (a,m, n, k, p) ◃ parallel I/O optimality (§ 6)

3: (G, aopt , bopt ) ← F itRanks(m, n, k, a, b, p, δ )
4: for all pi ∈ {1 . . . p } do in parallel
5: (Al , Bl , Cl ) ← GetDataDecomp(A, B, G, pi )

6: s ←
⌊
S−a2opt
2aopt

⌋
◃ latency-minimizing size of a step (6.3)

7: t ←
⌈ bopt

s

⌉
◃ number of steps

8: for j ∈ {1 . . . t } do
9: (Al , Bl ) ← DistrData(Al , Bl , G, j, pi )
10: Cl ← Multiply(Al , Bl , j) ◃ compute locally

11: end for
12: C ← Reduce(Cl , G) ◃ reduce the partial results

13: end for

4 ARBITRARY CGAGS: LOWER BOUNDS
We now present a mathematical machinery for deriving I/O lower

bounds for general CDAGs.We extend themain lemma byHong and

Kung [34], which provides a method to find an I/O lower bound for

a given CDAG. That lemma, however, does not give a tight bound,

as it overestimates a reuse set size (cf. Lemma 3). Our key result here,

Lemma 4, allows us to derive a constructive proof of a tighter I/O

lower bound for a sequential execution of the MMM CDAG (§ 5).

The driving idea of both Hong and Kung’s and our approach is

to show that some properties of an optimal pebbling of a CDAG (a

problem which is PSPACE-complete [40]) can be translated to the

properties of a specific partition of the CDAG (a collection of subsets

Vi of the CDAG; these subsets form subcomputations, see § 2.2).

One can use the properties of this partition to bound the number

of I/O operations of the corresponding pebbling. Hong and Kung

use a specific variant of this partition, denoted as S-partition [34].

We first introduce our generalization of S-partition, called X -
partition, that is the base of our analysis.

X -Partitions Before we define X -partitions, we first need to

define two sets, the dominator set and the minimum set. Given a

subset Vi ∈ V , define a dominator set Dom(Vi ) as a set of vertices
3
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M
M
M

m, n, k Matrix dimensions
A, B Input matrices A ∈ Rm×k and B ∈ Rk×n
C = AB Output matrixC ∈ Rm×n
p The number of processors

gr
ap

hs

G A directed acyclic graphG = (V , E)
Pred (v) A set of immediate predecessors of a vertex v :

Pred (v) = {u : (u, v) ∈ E }
Succ(v) A set of immediate successors of a vertex v :

Succ(v) = {u : (v, u) ∈ E }

I/
O

co
m
pl
ex

it
y

S The number of red pebbles (size of the fast memory)
Vi An i -th subcomputation of an S -partition
Dom(Vi ), Min(Vi ) Dominator and minimum sets of subcomputationVi
VR,i

The reuse set : a set of vertices containing red pebbles
(just beforeVi starts) and used byVi

H (S ) The smallest cardinality of a valid S -partition
R(S ) The maximum size of the reuse set
Q The I/O cost of a schedule (a number of I/O operations)
ρi The computational intensity ofVi
ρ = maxi {ρi } The maximum computational intensity

Sc
he

du
le
s S = {V1, . . . , Vh } The sequential schedule (an ordered set ofVi )

P = {S1, . . . , Sp } The parallel schedule (a set of sequential schedules Sj )
Dj =

⋃
Vi ∈Sj Vi The local domain (a set of vertices in Sj

a, b Sizes of a local domain: |Dj | = a2b

Table 2: The most important symbols used in the paper.

in V , such that every path from any input of a CDAG to any vertex

in Vi must contain at least one vertex in Dom(Vi ). Define also the

minimum set Min(Vi ) as the set of all vertices inVi that do not have
any children in Vi .

Now, given a CDAG G = (V ,E), let V1,V2, . . .Vh ∈ V be a series

of subcomputations that (1) are pairwise disjoint (∀i, j,i,jVi ∩Vj =
∅), (2) cover the whole CDAG (

⋃
i Vi = V ), (3) have no cyclic

dependencies between them, and (4) their dominator and minimum

sets are at most of size X (∀i (|Dom(Vi )| ≤ X ∧ |Min(Vi )| ≤ X )).
These subcomputations Vi correspond to some execution order (a

schedule) of the CDAG, such that at step i , only vertices in Vi are
pebbled. We call this series anX -partition or a schedule of the CDAG
and denote this schedule with S(X ) = {V1, . . . ,Vh }.

4.1 Existing General I/O Lower Bound
Here we need to briefly bring back the original lemma by Hong and

Kung, together with an intuition of its proof, as we use a similar

method for our Lemma 3.

Intuition The key notion in the existing bound is to use X = 2S-
partitions for a given fast memory size S . For any subcomputation

Vi , if |Dom(Vi )| = 2S , then at most S of them could contain a red

pebble before Vi begins. Thus, at least S additional pebbles need to

be loaded from the memory. The similar argument goes forMin(Vi ).
Therefore, knowing the lower bound on the number of sets Vi in
a valid 2S-partition, together with the observation that each Vi
performs at least S I/O operations, we phrase the lemma by Hong

and Kung:

Lemma 1 ( [34]). The minimal number Q of I/O operations for

any valid execution of a CDAG of any I/O computation is bounded

by

Q ≥ S · (H (2S) − 1) (1)

Proof. Assume that we know the optimal complete calculation
of the CDAG, where a calculation is a sequence of allowed moves

in the red-blue pebble game [34]. Divide the complete calculation

into h consecutive subcomputations V1,V2, ...,Vh , such that during

the execution of Vi , i < h, there are exactly S I/O operations, and

in Vh there are at most S operations. Now, for each Vi , we define
two subsets ofV ,VR,i andVB,i .VR,i contains vertices that have red

pebbles placed on them just beforeVi begins.VB,i contains vertices
that have blue pebbles placed on them just before Vi begins, and
have red pebbles placed on them duringVi . Using these definitions,
we have: ❶ VR,i ∪VB,i = Dom(Vi ), ❷ |VR,i | ≤ S , ❸ |VB,i | ≤ S , and
❹ |VR,i∪VB,i | ≤ |VR,i |+ |VB,i | ≤ 2S . We define similar subsetsWB,i
andWR,i for the minimum setMin(Vi ).WB,i contains all vertices

in Vi that have a blue pebble placed on them during Vi , andWR,i
contains all vertices in Vi that have a red pebble at the end of Vi .
By the definition of Vi , |WB,i | ≤ S , by the constraint on the red

pebbles, we have |WR,i | ≤ S , and by te definition of the minimum

set,Min(Vi ) ⊂WR,i ∪WB,i . Finally, by the definition of S-partition,
V1,V2, ...,Vh form a valid 2S-partition of the CDAG. �

4.2 Generalized I/O Lower Bounds
4.2.1 Data Reuse. Amore careful look at the setsVR,i ,VB,i ,WR,i ,

andWB,i allows us to refine the bound on the number of I/O oper-

ations on a CDAG. By definition, VB,i is a set of vertices on which

we place a red pebble using the load rule; We call VB,i a load set of
Vi . Furthermore,WB,i contains all the vertices on which we place

a blue pebble during the pebbling of Vi ; We callWB,i a store set of
Vi . However, we impose more strict VR,i andWR,i definitions: VR,i
contains vertices that have red pebbles placed on them just before

Vi begins and – for each such vertex v ∈ VR,i – at least one child of
v is pebbled during the pebbling of Vi using the compute rule of the
red-blue pebble game. We call VR,i a reuse set of Vi . Similarly,WR,i
contains vertices that have red pebbles placed on them afterVi ends
and were pebbled during Vi and – for each such vertex v ∈WR,i –
at least one child of v is pebbled during the pebbling ofVi+1 using the
compute rule of the red-blue pebble game. We callWR,i a cache set
of Vi . Therefore, if Qi is the number of I/O operations during the

subcomputation Vi , then Qi ≥ |VB,i | + |WB,i |.

We first observe that, given the optimal complete calculation,

one can divide this calculation into subcomputations such that

each subcomputation Vi performs an arbitrary number of Y I/O

operations. We still have |VR,i | ≤ S , |WR,i | ≤ S , 0 ≤ |WB,i | (by the

definition of the red-blue pebble game rules). Moreover, observe

that, because we perform exactly Y I/O operations in each subcom-

putation, and all the vertices inVB,i by definition have to be loaded,

|VB,i | ≤ Y . A similar argument gives 0 ≤ |WB,i | ≤ Y .
Denote an upper bound on |VR,i | and |WB,i | as R(S)

(∀i max{|VR,i |, |WB,i |} ≤ R(S) ≤ S). Further, denote a lower bound
on |VB,i | and |WB,i | asT (S) (∀i0 ≤ T (S) ≤ min{|VB,i |, |WB,i |}). We

can use R(S) and T (S) to tighten the bound on Q . We call R(S) a
maximum reuse and T (S) a minimum I/O of a CDAG.

4.2.2 Reuse-Based Lemma. We now use the above definitions

and observations to generalize the result ofHong andKung [34].

Lemma 2. An optimal complete calculation of a CDAGG = (V ,E),
which performs q I/O operations, is associated with an X -partition of
G such that

q ≥ (X − R(S) −T (S)) · (h − 1)

for any value of X ≥ S , where h is the number of subcomputations
in the X -partition, R(S) is the maximum reuse set size, and T (S) is
the minimum I/O in the given X -partition.

Proof. We use analogous reasoning as in the original lemma.We

associate the optimal pebbling with h consecutive subcomputations

4
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V1, . . .Vh with the difference that each subcomputationVi performs

Y = X − R(S) +T (S) I/O operations. Within those Y operations, we

consider separately qi,s store and qi,l load operations. For each Vi
we have qi,s +qi,l = Y , qi,s ≥ T (S), and qi,l ≤ Y −T (S) = X −R(S).

∀i : |VB,i | ≤ ql,i ≤ Y −T (S)

∀i : |VR,i | ≤ qs,i ≤ R(S) ≤ S

Since VR,i ∪VB,i = Dom(Vi ):

|Dom(Vi )| ≤ |VR,i | + |VB,i |

|Dom(Vi )| ≤ R(S) + Y −T (R) = X

By an analogous construction for store operations, we show

that |Min(Vi )| ≤ X . To show that S(X ) = {V1 . . .Vh } meets the

remaining properties of a valid X -partition S(X ), we use the same

reasoning as originally done [34].

Therefore, a complete calculation performing q > (X − R(S) +
T (S)) · (h − 1) I/O operations has an associated S(X ), such that

|S(X )| = h (if q = (X −R(S)+T (S))·(h−1), then |S(X )| = h−1). �

From the previous lemma, we obtain a tighter I/O lower bound.

Lemma 3. Denote H (X ) as the minimum number of subcomputa-
tions in any valid X -partition of a CDAG G = (V ,E), for any X ≥ S .
The minimal number Q of I/O operations for any valid execution of a
CDAG G = (V ,E) is bounded by

Q ≥ (X − R(S) +T (S)) · (H (X ) − 1) (2)

where R(S) is the maximum reuse set size and T (S) is the minimum
store set size. Moreover, we have

H (X ) ≥
|V |

|Vmax |
(3)

where Vmax = argmaxVi ∈S(X ) |Vi | is the largest subset of vertices
in the CDAG schedule S(X ) = {V1, . . . ,Vh }.

Proof. By definition, H (X ) = minS(X ) |S(X )| ≤ h, so Q ≥
(X − R(S) +T (S)) · (H (X ) − 1) immediately follows from Lemma 2.

To prove Eq. (3), observe that Vmax by definition is the largest

subset in the optimal X -partition. As the subsets are disjoint, any
other subset covers fewer remaining vertices to be pebbled than

Vmax . Because there are no cyclic dependencies between subsets,

we can order them topologically as V1,V2, ...VH (X ). To ensure that

the indices are correct, we also define V0 ≡ ∅. Now, defineWi to

be the set of vertices not included in any subset from 1 to i , that is
Wi = V −

⋃i
j=1Vj . Clearly,W0 = V andWH (X ) = ∅. Then, we have

∀i |Vi | ≤ |Vmax |

|Wi | = |Wi−1 | − |Vi | ≥ |Wi−1 | − |Vmax | ≥ |V | − i |Vmax |

|WH (X ) | = 0 ≥ |V | − H (X ) · |Vmax |

that is, after H (X ) steps, we have H (X )|Vmax | ≥ |V |. �

From this lemma, we derive the following lemma that we use to

prove a tight I/O lower bound for MMM (Theorem 1):

Lemma 4. Define the number of computations performed byVi for
one loaded element as the computational intensity ρi =

|Vi |
X−|VR,i |+ |WB,i |

of the subcomputation Vi . Denote ρ = maxi (ρi ) ≤
|Vmax |

X−R(S )+T (S ) to

be the maximal computational intensity. Then, the number of I/O
operations Q is bounded by Q ≥ |V |/ρ.

Proof. Note that the term H (X ) − 1 in Equation 2 emerges from

a fact that the last subcomputation may execute less thanY −R(S)+
T (S) I/O operations, since |VH (X ) | ≤ |Vmax |. However, because ρ
is defined as maximal computational intensity, then performing

|VH (S ) | computations requires at leastQH (S ) ≥ |VH (S ) |/ρ. The total
number of I/O operations therefore is:

Q =

H (X )∑
i=1

Qi ≥

H (X )∑
i=1

|Vi |

ρ
=
|V |

ρ

�

5 TIGHT I/O LOWER BOUNDS FOR MMM
In this section, we present our main theoretical contribution: a con-

structive proof of a tight I/O lower bound for classical matrix-matrix

multiplication. In § 6, we extend it to the parallel setup (Theorem 2).

This result is tight (up to diminishing factor

√
S/(
√
S + 1 − 1)), and

therefore may be seen as the last step in the long sequence of im-

proved bounds. Hong and Kung [34] derived an asymptotic bound

Ω
(
n3/
√
S
)
for the sequential case. Irony et al. [33] extended the

lower bound result to a parallel machine with p processes, each

having a fast private memory of size S , proving the
n3

4

√
2p
√
S
− S

lower bound on the communication volume per process. Recently,

Smith and van de Gein [47] proved a tight sequential lower bound

(up to an additive term) of 2mnk/
√
S − 2S . Our proof improves the

additive term and extends it to a parallel schedule.

Theorem 1 (Seqential Matrix Multiplication I/O lower

bound). Any pebbling of MMM CDAG which multiplies matrices of
sizesm × k and k × n by performingmnk multiplications requires a
minimum number of 2mnk√

S
+mn I/O operations.

The proof of Theorem 1 requires Lemmas 5 and 6, which in turn,

require several definitions.

Intuition: Restricting the analysis to greedy schedules provides explicit
information of a state of memory (setsVr ,VR,r ,WB,r ), and to a corre-
sponding CDAG pebbling. Additional constraints (§ 5.2.7) guarantee
feasibility of a derived schedule (and therefore, lower bound tightness).

5.1 Definitions
5.1.1 Vertices, Projections, and Edges in the MMM CDAG. The

set of vertices of MMM CDAG G = (V ,E) consists of three subsets
V = A∪B∪C, which correspond to elements in matricesA, B, and
mnk partial sums of C . Each vertex v is defined uniquely by a pair

(M,T ), where M ∈ {a,b, c} determines to which subset A, B, C

vertexv belongs to, andT ∈ Nd is a vector of coordinates, d = 2 for

M = a ∨ b and d = 3 forM = c . E.g., v = (a, (1, 5)) ∈ A is a vertex

associated with element (1, 5) in matrix A, and v = (c, (3, 6, 8)) ∈ C
is associated with 8th partial sum of element (3, 6) of matrix C .

For every t3th partial update of element (t1, t2) in matrix C , and
an associated pointv = (c, (t1, t2, t3)) ∈ C we define ϕc (v) = (t1, t2)
to be a projection of this point to matrix C , ϕa (v) = (a, (t1, t3)) ∈ A
is its projection to matrix A, and ϕb (v) = (b, (t3, t2)) ∈ B is its

projection to matrix B. Note that while ϕa (v),ϕb (v) ∈ V , projection

ϕc (v) < V has not any associated point in V . Instead, vertices

5
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associated with all k partial updates of an element of C have the

same projection ϕc (v):

∀v=(c,(p1,p2,p3)),w=(c,(q1,q2,q3))∈C : (p1 = q1) ∧ (p2 = q2)

⇐⇒ ϕc (p) = ϕc (q) (4)

As a consequence, ϕc ((c, (t1, t2, t3))) = ϕc ((c, (t1, t2, t3 − 1))).
A t3th update of (t1, t2) element in matrix C of a classical MMM

is formulated as C(t1, t2, t3) = C(t1, t2, t3 − 1) + A(t1, t3) · B(t3, t2).
Therefore for eachv = (c, (t1, t2, t3)) ∈ C, t3 > 1, we have following

edges in the CDAG: (ϕa (v),v), (ϕb (v),v), (c, (t1, t2, t3 − 1)),v) ∈ E.

5.1.2 α, β,γ, Γ. For a given subcomputationVr ⊆ C, we denote
its projection to matrix A as αr = ϕa (Vr ) = {v : v = ϕa (c), c ∈ Vr },
its projection to matrix B as βr = ϕb (Vr ), and its projection to

matrix C as γr = ϕc (Vr ). We further define Γr ⊂ C as a set of

all vertices in C that have a child in Vr . The sets α , β, Γ therefore

correspond to the inputs of Vr that belong to matrices A, B, and
previous partial results of C , respectively. These inputs form a

minimal dominator set of Vr :

Dom(Vr ) = αr ∪ βr ∪ Γr (5)

Because Min(Vr ) ⊂ C, and each vertex v ∈ C has at most one

childw withϕc (v) = ϕc (w) (Equation 4), the projectionϕc (Min(Vr ))
is also equal to γr :

ϕc (Vr ) = ϕc (Γr ) = ϕc (Min(Vr )) = γr (6)

5.1.3 Red(). Define Red(r ) as the set of all vertices that have
red pebbles just before subcomputation Vr starts, with Red(1) = ∅.
We further have Red(P), P ⊂ V is the set of all vertices in some

subset P that have red pebbles and Red(ϕc (P)) is a set of unique
pairs of first two coordinates of vertices in P that have red pebbles.

5.1.4 Greedy schedule. We call a schedule S = {V1, . . . ,Vh }
greedy if during every subcomputation Vr every vertex u that will

hold a red pebble either has a child in Vr or belongs to Vr :

∀r : Red(r ) ⊂ αr−1 ∪ βr−1 ∪Vr−1 (7)

5.2 I/O Optimality of Greedy Schedules
Lemma 5. Any greedy schedule that multiplies matrices of sizes

m × k and k × n using mnk multiplications requires a minimum
number of 2mnk√

S
+mn I/O operations.

Proof. We start by creating an X -partition for an MMM CDAG

(the values of Y and R(S) are parameters that we determine in the

course of the proof). The proof is divided into the following 6 steps

(Sections 5.2.1 to 5.2.6).

5.2.1 Red Pebbles During and After Subcomputation. Observe
that each vertex in c = (t1, t2, t3) ∈ C, t1 = 1 . . .m, t2 = 1 . . .n, t3 =
1 . . .k − 1 has only one child c = (t1, t2, t3 + 1). Therefore, we

can assume that in an optimal schedule there are no two vertices

(t1, t2, t3), (t1, t2, t3 + f ) ∈ C, f ∈ N+ that simultaneously hold a

red vertex, as when the vertex (t1, t2, t3 + 1) is pebbled, a red pebble
can be immediately removed from (t1, t2, t3):

|Red(Vr )| = |ϕc (Red(Vr ))| (8)

On the other hand, for every vertex v , if all its predecessors
Pred(v) have red pebbles, then vertex v may be immediately com-

puted, freeing a red pebble from its predecessorw ∈ C, due to the

fact, that v is the only child ofw :

∀v ∈V ∀r : Pred(v) ⊂ Dom(Vr ) ∪Vr =⇒ ∃t ≤rv ∈ Vt (9)

Furthermore, after subcomputation Vr , all vertices in Vr that

have red pebbles are in its minimum set:

Red(r + 1) ∩Vr = Red(r + 1) ∩Min(Vr ) (10)

Combining this result with the definition of a greedy schedule

(Equation 7), we have

Red(r + 1) ⊆ αr ∪ βr ∪Min(Vr ) (11)

5.2.2 Surface and volume of subcomputations. By the definition

of X -partition, the computation is divided into H (X ) subcomputa-

tions Vr ⊂ C, r ∈ {1, . . .H (X )}, such that Dom(Vr ),Min(Vr ) ≤ X .

Inserting Equations 5, 6, and 8, we have:

|Dom(Vr )| = |αr | + |βr | + |γr | ≤ X (12)

|Min(Vr )| = |γr | ≤ X

On the other hand, the Loomis-Whitney inequality [? ] bounds
the volume of Vr :

Vr ≤
√
|αr | |βr | |γr | (13)

Consider sets of all different indices accessed by projections αr ,
βr , γr :

T1 = {t1,1, . . . , t1,a }, |T1 | = a

T2 = {t2,1, . . . , t2,b }, |T2 | = b

T3 = {t3,1, . . . , t3,c }, |T3 | = c

αr ⊆ {(t1, t3) : t1 ∈ T1, t3 ∈ T3} (14)

βr ⊆ {(t3, t2) : t3 ∈ T3, t2 ∈ T2} (15)

γr ⊆ {(t1, t2) : t1 ∈ T1, t2 ∈ T2} (16)

Vr ⊆ {(t1, t2, t3) : t1 ∈ T1, t2 ∈ T2, t3 ∈ T3} (17)

For fixed sizes of the projections |αr |, |βr |, |γr |, then the volume

|Vr | is maximized when left and right side of Inequalities 14 to 16

are equal. Using 5 and 9 we have that 17 is an equality too, and:

|αr | = ac, |βr | = bc, |γr | = ab, |Vr | = abc, (18)

achieving the upper bound (Equation 13).

5.2.3 Reuse set VR,r and store setWB,r . Consider two subse-

quent computations, Vr and Vr+1. After Vr , αr , βr , and Vr may

have red pebbles (Equation 7). On the other hand, for the domi-

nator set of Vr+1 we have |Dom(Vr+1)| = |αr+1 | + |βr+1 | + |γr+1 |.
Then, the reuse set VR,i+1 is an intersection of those sets. Since

αr ∩ βr = αr ∩ γr = βr ∩ γr = ∅, we have (confront Equation 11):

VR,r+1 ⊆ (αr ∩ αr+1) ∪ (βr ∩ βr+1) ∪ (Min(Vr ) ∩ Γr+1)

|VR,r+1 | ≤ |αr ∩ αr+1 | + |βr ∩ βr+1 | + |γr ∩ γr+1 | (19)

Note that vertices in αr and βr are inputs of the computation:

therefore, by the definition of the red-blue pebble game, they start

in the slow memory (they already have blue pebbles). Min(Vr ),

6
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on the other hand, may have only red pebbles placed on them.

Furthermore, by the definition of the S-partition, these vertices

have children that have not been pebbled yet. They either have

to be reused forming the reuse set VR,r+1, or stored back, forming

WB,r and requiring the placement of the blue pebbles. Because

Min(Vr ) ∈ C and C ∩ A = C ∩ B = ∅, we have:

WB,r ⊆ Min(Vr ) \ Γr+1

|WB,r | ≤ |γr \ γr+1 | (20)

5.2.4 Overlapping computations. Consider two subcomputations

Vr and Vr+1. Denote shared parts of their projections as αs =
αr ∩ αr+1, βs = βr ∩ βr+1, and γs = γr ∩ γr+1. Then, there are

two possibilities:

(1) Vr and Vr+1 are not cubic, resulting in their volume smaller

than the upper bound |Vr+1 | <
√
|αr+1 | |βr+1 | |γr+1 | (Equa-

tion 13),

(2) Vr and Vr+1 are cubic. If all overlapping projections are not

empty, then they generate an overlapping computation, that

is, there exist vertices v , such that ϕik (v) ∈ αs ,ϕk j (v) ∈
βs ,ϕi j (v) ∈ γs . Because we consider greedy schedules, those
vertices cannot belong to computation Vr+1 (Equation 9).

Therefore, again |Vr+1 | <
√
|αr+1 | |βr+1 | |γr+1 |. Now con-

sider sets of all different indices accessed by those rectangu-

lar projections (Section 5.2.2, Inequalities 14 to 16). Fixing

two non-empty projections we define all three setsT1,T2,T3,
which in turn, generate the third (non-empty) projection, re-

sulting again in overlapping computations which reduce the

size of |Vr+1 |. Therefore, for cubic subcomputations, their

volume is maximized |Vr+1 | =
√
|αr+1 | |βr+1 | |γr+1 | if at most

one of the overlapping projections is non-empty (and there-

fore, there is no overlapping computation).

5.2.5 Maximizing computational intensity. Computational inten-

sity ρr of a subcomputationVr is an upper bound on ratio between

its size |Vr | and the number of I/O operations required. The number

of I/O operations is minimized when ρ is maximized (Lemma 4):

maximize ρr =
|Vr |

X − R(S) +T (S)
≥

|Vr |

Dom(Vr ) − |VR,r | + |WB,r |

subject to:

|Dom(Vr )| ≤ X

|VR,r | ≤ S

To maximize the computational intensity, for a fixed number of

I/O operations, the subcomputation size |Vr | is maximized. Based

on Observation 5.2.4, it is maximized only if at most one of the

overlapping projections αr ∩αr+1, βr ∩βr+1,γr ∩γr+1 is not empty.

Inserting Equations 13, 12, 19, and 20, we have the following three

equations for the computational intensity, depending on the non-

empty projection:

αr ∩ αr+1 , ∅ :

ρr =

√
|αr | |βr | |γr |

|αr | + |βr | + |γr | − |αr ∩ αr+1 | + |γr |
(21)

βr ∩ βr+1 , ∅ :

ρr =

√
|αr | |βr | |γr |

|αr | + |βr | + |γr | − |βr ∩ βr+1 | + |γr |
(22)

γr ∩ γr+1 , ∅ :

ρr =

√
|αr | |βr | |γr |

|αr | + |βr | + |γr | − |γr ∩ γr+1 | + |γr \ γr+1 |
(23)

ρr is maximized when γr = γr+1,γr ∩ γr+1 , ∅,γr \ γr+1 = ∅
(Equation 23).

Then, inserting Equations 18, we have:

maximize ρr =
abc

ac + cb
subject to:

ab + ac + cb ≤ X

ab ≤ S

a,b, c ∈ N+,

where X is a free variable. Simple optimization technique using

Lagrange multipliers yields the result:

a = b = ⌊
√
S⌋, c = 1, (24)

|αr | = |βr | = ⌊
√
S⌋, |γr | = ⌊

√
S⌋2,

|Vr | = ⌊
√
S⌋2,X = ⌊

√
S⌋2 + 2⌊

√
S⌋

ρr =
⌊
√
S⌋

2

(25)

From now on, to keep the calculations simpler, we use assume

that

√
S ∈ N+.

5.2.6 MMM I/O complexity of greedy schedules. By the compu-

tational intensity corollary (cf. page 4 in the main paper):

Q ≥
|V |

ρ
=

2mnk
√
S

This is the I/O cost of putting a red pebble at least once on every

vertex in C. Note however, that we did not put any blue pebbles

on the outputs yet (all vertices in C had only red pebbles placed

on them during the execution). By the definition of the red-blue

pebble game, we need to place blue pebbles onmn output vertices,

corresponding to the output matrix C , resulting in additionalmn
I/O operations, yielding final bound

Q ≥
2mnk
√
S
+mn

�

5.2.7 Attainability of the Lower Bound. Restricting the analy-

sis to greedy schedules provides explicit information of a state of

memory (sets Vr , VR,r ,WB,r ), and therefore, to a corresponding

CDAG pebbling. In Section 5.2.5, it is proven that an optimal greedy

schedule is composed of
mnk
R(S ) outer product calculations, while

loading

√
R(S) elements of each of matrices A and B. While the

lower bound is achieved for R(S) = S , such a schedule is infeasible,

7
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as at least some additional red pebbles, except the ones placed on

the reuse set VR,r , have to be placed on 2

√
R(S) vertices of A and B.

A direct way to obtain a feasible greedy schedule is to set X = S ,
ensuring that the dominator set can fit into the memory. Then each

subcomputation is an outer-product of column-vector of matrix A

and row-vector of B, both holding
√
S + 1−1 values. Such a schedule

performs
2mnk√
S+1−1

+mn I/O operations, a factor of

√
S

√
S+1−1

more

than a lower bound, which quickly approach 1 for large S . Listing 1
provides a pseudocode of this algorithm, which is a well-known

rank-1 update formulation of MMM. However, we can do better.

Let’s consider a generalized case of such subcomputation Vr .
Assume, that in each step:

(1) a elements of A (forming αr ) are loaded,
(2) b elements of B (forming βr ) are loaded,
(3) ab partial results of C are kept in the fast memory (forming

Γr )
(4) ab values of C are updated (forming Vr ),
(5) no store operations are performed.

Each vertex in αr has b children in Vr (each of which has also

a parent in βr ). Similarly, each vertex in βr has a children in Vr ,
each of which has also a parent in αr . We first note, that ab < S
(otherwise, we cannot do any computation while keeping all ab
partial results in fast memory). Any red vertex placed on αr should
not be removed from it until all b children are pebbled, requiring

red-pebbling of corresponding b vertices from βr . But, in turn, any

red pebble placed on a vertex in βr should not be removed until all

a children are red pebbled.

Therefore, either all a vertices in αr , or all b vertices in βr have
to be hold red pebbles at the same time, while at least one additional

red pebble is needed on βr (or αr ). W.l.o.g., assume we keep red

pebbles on all vertices of αr . We then have:

maximize ρr =
ab

a + b
subject to:

ab + a + 1 ≤ S

a,b ∈ N+, (26)

The solution to this problem is

aopt =


√
(S − 1)3 − S + 1

S − 2

 <
√
S (27)

bopt =

−
2 S +

√
(S − 1)3 − S2 − 1√
(S − 1)3 − S + 1

 <
√
S (28)

1 for i1 = 1 :

⌈
m

aopt

⌉
2 for j1 = 1 :

⌈
n

bopt

⌉
3 for r = 1 : k % k is the outer loop
4 %elementary subcomputation Vr
5 for i2 = i1 · T : min((i1 + 1) · aopt ,m)
6 for j2 = j1 · T : min((j1 + 1) · bopt , n)
7 C(i2, j2) = C(i2, j2) + A(i2, r ) · B(r, j2)

Listing 1: Pseudocode of near optimal sequential MMM

5.3 Greedy vs Non-greedy Schedules
In § 5.2.6, it is shown that the I/O lower bound for any greedy sched-

ule is Q ≥ 2mnk√
S
+mn. Furthermore, Listing 1 provide a schedule

that attains this lower bound (up to a aoptbopt /S factor). To prove

that this bound applies to any schedule, we need to show, that any

non-greedy cannot perform better (perform less I/O operations)

than the greedy schedule lower bound.

Lemma 6. Any non-greedy schedule computing classical matrix
multiplication performs at least 2mnk√

S
+mn I/O operations.

Proof. Lemma 3 applies to any schedule and for any value of

X . Clearly, for any general schedule we cannot directly model VR,i ,
VB,i ,WR,i , andWB,i , and therefore T (S) and R(S). However, it is
always true that 0 ≤ T (S) and R(S) ≤ S . Also, the dominator

set formed in Equation 5 applies for any subcomputation, as well

as a bound on |Vr | from Inequality 13. We can then rewrite the

computational intensity maximization problem:

maximize ρr =
|Vr |

X − R(S) +T (S)
≤

√
|αr | |βr | |γr |

|αr | + |βr | + |γr | − S

subject to:

S < |αr | + |βr | + |γr | = X

(29)

This is maximized for |αr | = |βr | = |γr | = X/3, yielding

ρr =
(X/3)3/2

X − S
Becausemnk/ρr is a valid lower bound for anyX > S (Lemma 4),

we want to find such value Xopt for which ρr is minimal, yielding

the highest (tightest) lower bound on Q :

minimize ρr =
(X/3)3/2

X − S
subject to:

X ≥ S

(30)

which, in turn, is minimized for X = 3S . This again shows, that

the upper bound on maximum computational intensity for any

schedule is

√
S/2, which matches the bound for greedy schedules

(Equation 25). �

We note that Smith and van de Gein [47] in their paper also

bounded the number of computations (interpreted geometrically

as a subset in a 3D space) by its surface and obtained an analo-

gous result for this surface (here, a dominator and minimum set

sizes). However, using computational intensity lemma, our bound

is tighter by 2S (+mn, counting storing the final result).
Proof of Theorem 1:
Lemma 5 establishes that the I/O lower bound for any greedy sched-

ule is Q = 2mnk/
√
S + mn. Lemma 6 establishes that no other

schedule can perform less I/O operations.

�
Corollary: The greedy schedule associatedwith anX = S-partition

performs at most

√
S

√
S+1−1

more I/O operations than a lower bound.

8
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The optimal greedy schedule is associated with an X = aoptbopt +

aopt + bopt -partition and performs

√
S (aopt+bopt )
aoptbopt

I/O operations.

6 OPTIMAL PARALLEL MMM
We now derive the schedule of COSMA from the results from § 5.2.7.

The key notion is the data reuse, that determines not only the

sequential execution, as discussed in § 4.2 , but also the parallel

scheduling. Specifically, if the data reuse set spans across multiple

local domains, then this set has to be communicated between these

domains, increasing the I/O cost (Figure 3). We first introduce a

formalism required to parallelize the sequential schedule (§ 6.1).

In § 6.2, we generalize parallelization strategies used by the 2D,

2.5D, and recursive decompositions, deriving their communication

cost and showing that none of them is optimal in the whole range

of parameters. We finally derive the optimal decomposition (Find-
OptimalDomain function in Algorithm 1) by expressing it as an

optimization problem (§ 6.3), and analyzing its I/O and latency cost.

The remaining steps in Algorithm 1: FitRanks, GetDataDecomp, as
well as DistrData and Reduce are discussed in § 7.1, § 7.6, and § 7.2,

respectively. For a distributed machine, we assume that all matrices

fit into collective memories of all processors: pS ≥ mn +mk + nk .
For a shared memory setting, we assume that all inputs start in a

common slow memory.

6.1 Sequential and Parallel Schedules
Wenowdescribe how a parallel schedule is formed from a sequential

one. The sequential schedule S partitions the CDAG G = (V ,E)
into H (S) subcomputations Vi . The parallel schedule P divides S

among p processors: P = {D1, . . .Dp },
⋃p
j=1Dj = S. The set Dj

of all Vk assigned to processor j forms a local domain of j (Fig. 4c).
If two local domains Dk and Dl are dependent, that is,

∃u,∃v : u ∈ Dk ∧ v ∈ Dl ∧ (u,v) ∈ E, then u has to be com-
municated from processor k to l . The total number of vertices com-

municated between all processors is the I/O cost Q of schedule P.

We say that the parallel schedule Popt is communication–optimal
if Q(Popt ) is minimal among all possible parallel schedules.

The vertices of MMM CDAG may be arranged in an [m × n × k]
3D grid called an iteration space [58]. The orthonormal vectors i, j, k
correspond to the loops in Lines 1-3 in Listing 1 (Figure 3a). We call

a schedule P parallelized in dimension d if we “cut” the CDAG along

dimension d. More formally, each local domain Dj , j = 1 . . .p is a

grid of size either [m/p,n,k], [m,n/p,k], or [m,n,k/p]. The sched-
ule may also be parallelized in two dimensions (d1d2) or three di-
mensions (d1d2d3) with a local domain size [m/pm ,n/pn ,k/pk ] for
some pm ,pn ,pk , such that pmpnpk = p. We call G = [pm ,pn ,pk ]
the processor grid of a schedule. E.g., Cannon’s algorithm is par-

allelized in dimensions ij , with the processor grid [
√
p,
√
p, 1].

COSMA, on the other hand, may use any of the possible paral-

lelizations, depending on the problem parameters.

6.2 Parallelization Strategies for MMM
The sequential schedule S (§ 5) consists ofmnk/S elementary outer

product calculations, arranged in

√
S ×
√
S × k “blocks” (Figure 4).

The number p1 = mn/S of dependency-free subcomputations Vi
(i.e., having no parents except for input vertices) in S determines

the maximum degree of parallelism of Popt for which no reuse set

VR,i crosses two local domainsDj ,Dk . The optimal schedule is par-

allelized in dimensions ij. There is no communication between the

Crossing 
dependencies!

Crossing 
dependencies!

(d) (e) (f)

(a) MMM CDAG (b) Optimal 

i j

k

matrix A

matrix B

3D itera�on space

matrix C
(c) Local domain

output size: 

input size: elements elements

elements

Figure 4: (a) An MMM CDAG as a 3D grid (iteration space). Each vertex in it (except for the
vertices in the bottom layer) has three parents - blue (matrixA), red (matrix B), and yellow (partial
result of matrixC ) and one yellow child (except for vertices in the top layer). (b) A union of inputs
of all vertices in Vi form the dominator set Dom(Vi ) (two blue, two red and four dark yellow).
Using approximation

√
S + 1 − 1 ≈

√
S , we have |Dom(Vi,opt ) | = S . (c) A local domain D

consists of b subcomputationsVi , each of a dominator size |Dom(Vi ) | = a2 + 2a. (d-f) Different
parallelization schemes of near optimal sequential MMM for p = 24 > p1 = 6.

domains (except for inputs and outputs), and all I/O operations are

performed inside each Dj following the sequential schedule. Each

processor is assigned to p1/p local domains Dj of size
[√

S,
√
S,k

]
,

each of which requires 2

√
Sk +S I/O operations (Theorem 1), giving

a total of Q = 2mnk/(p
√
S) +mn/p I/O operations per processor.

When p > p1, the size of local domains |Dj | is smaller than
√
S ×
√
S × k . Then, the schedule has to either be parallelized in

dimension k, or has to reduce the size of the domain in ij plane.
The former option creates dependencies between the local domains,

which results in additional communication (Figure 4e). The latter

does not utilize the whole available memory, making the sequen-

tial schedule not I/O optimal and decreasing the computational

intensity ρ (Figure 4d). We now analyze three possible paralleliza-

tion strategies (Figure 4) which generalize 2D, 2.5D, and recursive

decomposition strategies; see Table 3 for details.

Schedule Pi j The schedule is parallelized in dimensions i and j.
The processor grid is Gi j =

[m
a ,

n
a , 1

]
, where a =

√
mn
p . Because all

dependencies are parallel to dimensionk, there are no dependencies
betweenDj except for the inputs and the outputs. Because a <

√
S ,

the corresponding sequential schedule has a reduced computational

intensity ρi j <
√
S/2.

Schedule Pi jk The schedule is parallelized in all dimensions.

The processor grid is Gi jk =
[ m√

S
, n√

S
, kpS

]
. The computational in-

tensity ρi jk =
√
S/2 is optimal. The parallelization in k dimension

creates dependencies between local domains, requiring communi-

cation and increasing the I/O cost.

Schedule Pcubic The schedule is parallelized in all dimensions.

The grid is

[m
ac ,

n
ac ,

k
ac

]
, where ac = min

{(mnk
p

)
1/3
,
√

S
3

}
. Be-

cause ac <
√
S , the corresponding computational intensity ρcubic

<
√
S/2 is not optimal. The parallelization in k dimension creates

dependencies between local domains, increasing communication.

Schedules of the State-of-the-Art Decompositions Ifm = n,
the Pi j scheme is reduced to the classical 2D decomposition (e.g.,

Cannon’s algorithm [10]), and Pi jk is reduced to the 2.5D decompo-

sition [52]. CARMA [22] asymptotically reaches the Pcubic scheme,

guaranteeing that the longest dimension of a local cuboidal domain

is at most two times larger than the smallest one. We present a de-

tailed complexity analysis comparison for all algorithms in Table 3.
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Decomposition 2D [55] 2.5D [52] recursive [22] COSMA (this paper)
Parallel schedule P Pi j form = n Pi jk form = n Pcubic Popt

grid
[
pm × pn × pk

] [√
p ×
√
p × 1

] [√
p/c ×

√
p/c × c

]
; c = pS

mk+nk [2a1 × 2a2 × 2a3 ]; a1 + a2 + a3 = log
2
(p)

[
m
a ×

n
a ×

k
b

]
; a, b : Equation 32

domain size
[
m√
p ×

n√
p × k

] [
m√
p/c
× n√

p/c
× k

c

] [
m
2
a
1
× n

2
a
1
× k

2
a
1

]
[a × a × b]

“General case”:

I/O costQ k√
p (m + n) +

mn
p

(k (m+n))3/2

p
√
S

+ mnS
k (m+n) 2min

{√
3
mnk
p
√
S
,
(
mnk
p

)
2/3 }

+
(
mnk
p

)
2/3

min

{
2mnk
p
√
S
+ S, 3

(
mnk
p

)
2/3 }

latency cost L 2k log
2
(
√
p) (k (m+n))5/2

pS3/2(km+kn−mn)
+ 3 log

2

(
pS

mk+nk

) (
3
3/2mnk

)
/

(
pS3/2

)
+ 3 log

2
(p) 2ab

S−a2
log

2

(
mn
a2

)
Square matrices, “limited memory”:m = n = k, S = 2n2/p, p = 2

3n

I/O costQ 2n2(
√
p + 1)/p 2n2(

√
p + 1)/p 2n2

(√
3/2p + 1/2p2/3

)
2n2(
√
p + 1)/p

latency cost L 2k log
2
(
√
p)

√
p

(
3

2

)
3/2 √

p log
2
(p)

√
p log

2
(p)

“Tall” matrices, “extra” memory available:m = n =
√
p, k = p3/2/4, S = 2nk/p2/3, p = 2

3n+1

I/O cost p3/2/2 p4/3/2 + p1/3 3p/4 p
(
3 − 21/3

)
/24/3 ≈ 0.69p

latency cost L p3/2 log
2
(
√
p)/4 1 1 1

Table 3: The comparison of complexities of 2D, 2.5D, recursive, and COSMA algorithms. The 3D decomposition is a special case of 2.5D, and can be obtained by instantiating c = p1/3 in the 2.5D case. In
addition to the general analysis, we show two special cases. If the matrices are square and there is no extra memory available, 2D, 2.5D and COSMA achieves tight communication lower bound 2n2/

√
p ,

whereas CARMA performs
√
3 times more communication. If one dimension is much larger than the others and there is extra memory available, 2D, 2.5D and CARMA decompositions perform O(p1/2),

O(p1/3), and 8% more communication than COSMA, respectively. For simplicity, we assume that parameters are chosen such that all divisions have integer results.

6.3 I/O Optimal Parallel Schedule
Observe that none of those schedules is optimal in the whole range

of parameters. As discussed in § 5, in sequential scheduling, interme-

diate results of C are not stored to the memory: they are consumed

(reused) immediately by the next sequential step. Only the final re-

sult of C in the local domain is sent. Therefore, the optimal parallel

schedule Popt minimizes the communication, that is, sum of the in-

puts’ sizes plus the output size, under the sequential I/O constraint

on subcomputations ∀Vi ∈Dj ∈Popt |Dom(Vi )| ≤ S ∧ |Min(Vi )| ≤ S .

The local domain Dj is a grid of size [a × a × b], containing b
outer products of vectors of length a. The optimization problem

of finding Popt using the computational intensity (Lemma 4) is

formulated as follows:

maximize ρ =
a2b

ab + ab + a2
(31)

subject to:

a2 ≤ S (the I/O constraint)

a2b =
mnk

p
(the load balance constraint)

pS ≥ mn +mk + nk (matrices must fit into memory)

The I/O constraint a2 ≤ S is binding (changes to equality) for

p ≤ mnk
S3/2 . Therefore, the solution to this problem is:

a = min

{√
S,

(mnk

p

)
1/3}
, b = max

{mnk

pS
,
(mnk

p

)
1/3}

(32)

The I/O complexity of this schedule is:

Q ≥
a2b

ρ
= min

{
2mnk

p
√
S
+ S, 3

(mnk

p

) 2

3

}
(33)

This can be intuitively interpreted geometrically as follows: if we

imagine the optimal local domain "growing" with the decreasing

number of processors, then it stays cubic as long as it is still "small

enough" (its side is smaller than

√
S). After that point, its face in

the ij plane stays constant
√
S ×
√
S and it "grows" only in the k

dimension. This schedule effectively switches from Pi jk to Pcubic
once there is enough memory (S ≥ (mnk/p)2/3).

Theorem 2. The I/O complexity of a classic Matrix Multiplication
algorithm executed on p processors, each of local memory size S ≥
mn+mk+nk

p is

Q ≥ min

{
2mnk

p
√
S
+ S, 3

(mnk

p

) 2

3

}
Proof. The theorem is a direct consequence of Lemma 3 and

the computational intensity (Lemma 4). The load balance constraint

enforces a size of each local domain |Dj | = mnk/p. The I/O cost

is then bounded by |Dj |/ρ. Schedule Popt maximizes ρ by the

formulation of the optimization problem (Equation 31). �

I/O-Latency Trade-off As showed in this section, the local

domainD of the near optimal schedule P is a grid of size [a×a×b],
where a,b are given by Equation (32). The corresponding sequential
schedule S is a sequence of b outer products of vectors of length

a. Denote the size of the communicated inputs in each step by

Istep = 2a. This corresponds to b steps of communication (the

latency cost is L = b).
The number of steps (latency) is equal to the total communication

volume ofD divided by the volume per step L = Q/Istep . To reduce
the latency, one either has to decreaseQ or increase Istep , under the

memory constraint that Istep+a
2 ≤ S (otherwise we cannot fit both

the inputs and the outputs in the memory). Express Istep = a · h,
where h is the number of sequential subcomputations Vi we merge

in one communication. We can express the I/O-latency trade-off:

min(Q,L)

subject to:

Q = 2ab + a2,L =
b

h

a2 + 2ah ≤ S (I/O constraint)

a2b =
mnk

p
(load balance constraint)

Solving this problem, we have Q = 2mnk
pa + a2 and L = 2mnk

pa(S−a2) ,

where a ≤
√
S . Increasing a we reduce the I/O cost Q and increase

the latency cost L. For minimal value ofQ (Theorem 2), L =
⌈
2ab
S−a2

⌉
,

where a = min{
√
S, (mnk/p)1/3} and b = max{mnk

pS , (mnk/p)1/3}.
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(a) 1 × 5 × 13 grid

single
idle 

process

(b) 4 × 4 × 4 grid with one idle processor

Figure 5: Processor decomposition for squarematrices and 65 processors. (a) To utilize all resources,
the local domain is drastically stretched. (b) Dropping one processor results in a symmetric grid
which increases the computation per processor by 1.5%, but reduces the communication by 36%.

Based on our experiments, we observe that the I/O cost is vastly

greater than the latency cost, therefore our schedule by default

minimizes Q and uses extra memory (if any) to reduce L.

7 IMPLEMENTATION
We now present implementation optimizations that further increase

the performance of COSMA on top of the speedup due to our near

I/O optimal schedule. The algorithm is designed to facilitate the

overlap of computation and communication § 7.3. For this, to lever-

age the RDMA mechanisms of current high-speed network inter-

faces, we use the MPI one-sided interface § 7.4. In addition, our

implementation also offers alternative efficient two-sided commu-

nication back end that uses MPI collectives. We also use a blocked

data layout § 7.6, a grid-fitting technique § 7.1, and an optimized

binary broadcast tree using static information about the communi-

cation pattern (§ 7.2) together with the buffer swapping (§ 7.5). For

the local matrix operations, we use BLAS routines for highest per-

formance. Our code is publicly available at https://github.com/eth-

cscs/COSMA.

7.1 Processor Grid Optimization
Throughout the paper, we assume all operations required to assess

the decomposition (divisions, roots) result in natural numbers. We

note that in practice it is rarely the case, as the parameters usually

emerge from external constraints, like a specification of a performed

calculation or hardware resources (§ 8). If matrix dimensions are

not divisible by the local domain sizes a,b (Equation 32), then a

straightforward option is to use the floor function, not utilizing the

“boundary” processors whose local domains do not fit entirely in the

iteration space, which result in more computation per processor.

The other option is to find factors of p and then construct the

processor grid by matching the largest factors with largest matrix

dimensions. However, if the factors of p do not match m,n, and
k , this may result in a suboptimal decomposition. Our algorithm

allows to not utilize some processors (increasing the computation

volume per processor) to optimize the grid, which reduces the

communication. Figure 5 illustrates the comparison between these

options. We balance this computation–communication trade-off by

"stretching" the local domain size derived in § 6.3 to fit the global

domain by adjusting its width, height, and length. The range of this

tuning (how many processors we drop to reduce communication)

depends on the hardware specification of the machine (peak flop/s,

memory and network bandwidth). For our experiments on Piz

Daint we chose the maximal number of unutilized cores to be 3%,

accounting for up to 2.4 times speedup for the square matrices

using 2,198 cores (§ 9).

7.2 Enhanced Communication Pattern
As shown in Algorithm 1, COSMA by default executes in t = 2ab

S−a2
rounds. In each round, each processor receives s = ab/t = (S−a2)/2
elements of A and B. Thus, the input matrices are broadcast among

the i and j dimensions of the processor grid. After the last round,

the partial results of C are reduced among the k dimension. The

communication pattern is therefore similar to ScaLAPACK or CTF.

To accelerate the collective communication, we implement our

own binary broadcast tree, taking advantage of the known data lay-

out, processor grid, and communication pattern. Knowing the initial

data layout § 7.6 and the processor grid § 7.1, we craft the binary

reduction tree in all three dimensions i, j, and k such that the dis-

tance in the grid between communicating processors is minimized.

Our implementation outperforms the standard MPI broadcast from

the Cray-MPICH 3.1 library by approximately 10%.

7.3 Computation–Communication Overlap
The sequential rounds of the algorithm ti = 1, . . . , t , naturally
express computation–communication overlap. Using double buffer-

ing, at each round ti we issue an asynchronous communication

(using either MPI_Put or MPI_Isend / MPI_Irecv § 7.4) of the data

required at round ti+1, while locally processing the data received

in a previous round. We note that, by the construction of the local

domains Dj § 6.3, the extra memory required for double buffering

is rarely an issue. If we are constrained by the available memory,

then the space required to hold the partial results of C , which is a2,
is much larger than the size of the receive buffers s = (S − a2)/2. If
not, then there is extra memory available for the buffering.

Number of rounds: The minimum number of rounds, and

therefore latency, is t = 2ab
S−a2 (§ 6.3) . However, to exploit more

overlap, we can increase the number of rounds t2 > t . In this way,

in one round we communicate less data s2 = ab/t2 < s , allowing
the first round of computation to start earlier.

7.4 One-Sided vs Two-Sided Communication
To reduce the latency [27] we implemented communication using

MPI RMA [32]. This interface utilizes the underlying features of

Remote Direct Memory Access (RDMA) mechanism, bypassing the

OS on the receiver side and providing zero-copy communication:

data sent is not buffered in a temporary address, instead, it is written

directly to its location.

All communication windows are pre-allocated using

MPI_Win_allocate with the size of maximum message in the broad-

cast tree 2
s−1D (§ 7.2). Communication in each step is performed

using the MPI_Put routine.

For compatibility reasons, as well as for the performance com-

parison, we also implemented a communication back-end using

MPI two-sided (the message passing abstraction).

7.5 Communication Buffer Optimization
The binary broadcast tree pattern is a generalization of the recursive

structure of CARMA. However, CARMA in each recursive step

dynamically allocates new buffers of the increasing size to match

the message sizes 2
s−1D, causing an additional runtime overhead.

To alleviate this problem, we pre-allocate up to three buffers per

matrix A, B, and C of the maximum size of the message ab/t , where

t = 2ab
S−a2 is the number of steps in COSMA (Algorithm 1). Then, in

each level s of the communication tree, we move the pointer in the

receive buffer by 2
s−1D elements.
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7.6 Blocked Data Layout
COSMA’s schedule induces the optimal initial data layout, since

for each Dj it determines its dominator set Dom(Dj ), that is, el-

ements accessed by processor j. Denote Al, j and Bl, j subsets of
elements of matrices A and B that initially reside in the local mem-

ory of processor j. The optimal data layout therefore requires that

Al, j ,Bl, j ⊂ Dom(Dj ). However, the schedule does not specify ex-

actly which elements of Dom(Dj ) should be in Al, j and Bl, j . As a
consequence of the communication pattern § 7.2, each element of

Al, j and Bl, j is communicated to дm , дn processors, respectively.

To prevent data reshuffling, we therefore split each of Dom(Dj )

into дm and дn smaller blocks, enforcing that consecutive blocks

are assigned to processors that communicate first. This is unlike the

distributed CARMA implementation [22], which uses the cyclic dis-

tribution among processors in the recursion base case and requires

local data reshuffling after each communication round. Another

advantage of our blocked data layout is a full compatibility with

the block-cyclic one, which is used in other linear-algebra libraries.

8 EVALUATION
We evaluate COSMA’s communication volume and performance

against other state-of-the-art implementations with various com-

binations of matrix dimensions and memory requirements. These

scenarios include both synthetic square matrices, in which all algo-

rithms achieve their peak performance, as well as “flat” (two large

dimensions) and real-world “tall-and-skinny” (one large dimension)

cases with uneven number of processors.

Comparison Targets As a comparison, we use the widely used

ScaLAPACK library as provided by Intel MKL (version: 18.0.2.199)
3
,

as well as Cyclops Tensor Framework
4
, and the original CARMA im-

plementation
5
.Wemanually tune ScaLAPACK parameters to achieve

its maximum performance. Our experiments showed that on Piz

Daint it achieves the highest performance when run with 4 MPI

ranks per compute node, 9 cores per rank. Therefore, for each ma-

trix sizes/node count configuration, we recompute the optimal rank

decomposition for ScaLAPACK. Remaining implementations use

default decomposition strategy and perform best utilizing 36 ranks

per node, 1 core per rank.

Infrastructure and Implementation Details All implemen-

tations were compiled using the gcc 5.3.0 compiler. We use Cray-

MPICH 3.1 implementation of MPI. The parallelism within a rank

of ScaLAPACK
6
is handled internally by the MKL BLAS (with GNU

OpenMP threading) version 2017.4.196. To profile MPI communica-

tion volume, we use the mpiP profiler version 3.4.1 [56].

Experimental Setup and Architectures We run our experi-

ments on the CPU partition of the CSCS Piz Daint, which has 1,813

XC40 nodes with dual-socket Intel Xeon E5-2695 v4 processors

(2 · 18 cores, 3.30 GHz, 45 MiB L3 shared cache, 64 GiB DDR3 RAM),

interconnected with Cray Aries network. We set p to a number of

available cores
7
and S to the main memory size per core (§ 2.1). To

additionally capture cache size per core, the model can be extended

3
the latest version available on Piz Daint when benchmarks were performed (August

2018). No improvements of P[S,D,C,Z]GEMM have been reported in the MKL release

notes since then.

4
https://github.com/cyclops-community/ctf, commit ID 244561c on May 15, 2018

5
https://github.com/lipshitz/CAPS, commit ID 7589212 on July 19, 2013

6
only ScaLAPACK uses multiple cores per ranks

7
for ScaLAPACK, actual number of MPI ranks is p/9

to a three-level memory hierarchy. However, cache-size tiling is

already handled internally by the MKL.

Matrix Dimensions and Number of Cores We use square

(m = n = k), “largeK” (m = n ≪ k), “largeM” (m ≫ n = k),
and “flat” (m = n ≫ k) matrices. The matrix dimensions and

number of cores are (1) powers of twom = 2
r1 ,n = 2

r2 ,m = 2
r3
, (2)

determined by the real-life simulations or hardware architecture

(available nodes on a computer), (3) chosen adversarially, e.g, n3 + 1.
Tall matrix dimensions are taken from an application benchmark,

namely the calculation of the random phase approximation (RPA)

energy of water molecules [21]. There, to simulate w molecules,

the sizes of the matrices arem = n = 136w and k = 228w2
. In the

strong scaling scenario, we use w = 128 as in the original paper,

yieldingm = n = 17,408, k = 3,735,552. For performance runs, we

scale up to 512 nodes (18,432 cores).

Selection of BenchmarksWe perform both strong scaling and

memory scaling experiments. The memory scaling scenario fixes

the input size per core (
pS
I , I =mn +mk + nk), as opposed to the

work per core (
mnk
p , const ). We evaluate two cases: (1) "limited

memory" (
pS
I = const ), and (2) "extra memory" (

p2/3S
I = const ).

To provide more information about the impact of communication

optimizations on the total runtime, for each of the matrix shapes we

also separately measure time spent by COSMA on different parts

of the code. for each matrix shape we present two extreme cases of

strong scaling - with smallest number of processors (most compute-

intense) and with the largest (most communication-intense). To

additionally increase information provided, we perform these mea-

surements with and without computation-communication overlap.

Programming ModelsWe use either the RMA or the Message

Passing models. CTF also uses both models, whereas CARMA and

ScaLAPACK use MPI two-sided (Message Passing).

Experimentation Methodology For each combination of pa-

rameters, we perform 5 runs, each with different node allocation.

As all the algorithms use BLAS routines for local matrix computa-

tions, for each run we execute the kernels three times and take the

minimum to compensate for the BLAS setup overhead. We report

median and 95% confidence intervals of the runtimes.

9 RESULTS
We now present the experimental results comparing COSMA with

the existing algorithms. For both strong and memory scaling, we

measure total communication volume and runtime on both square

and tall matrices. Our experiments show that COSMA always com-

municates least data and is the fastest in all scenarios.
Summary and Overall Speedups As discussed in § 8, we eval-

uate three benchmarks – strong scaling, “limited memory” (no re-

dundant copies of the input are possible), and “extra memory” (p1/3

extra copies of the input can fit into combined memory of all cores).

Each of them we test for square, “largeK”, “largeM”, and , “flat” ma-

trices, giving twelve cases in total. In Table 4, we present arithmetic

mean of total communication volume per MPI rank across all core

counts. We also report the summary of minimum, geometric mean,

and maximum speedups vs the second best-performing algorithm.

Communication Volume As analyzed in § 5 and § 6, COSMA

reaches I/O lower bound (up to the factor of

√
S/(
√
S + 1−1)). More-

over, optimizations presented in § 7 secure further improvements

compared to other state-of-the-art algorithms. In all cases, COSMA
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Figure 6: Total communication volume per core carried out by COSMA, CTF, ScaLAPACK and CARMA for square matrices, as measured by the mpiP profiler.
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Figure 7: Total communication volume per core carried out by COSMA, CTF, ScaLAPACK and CARMA for “largeK” matrices, as measured by the mpiP profiler.

performs least communication. Total communication volume for

square and “largeK” scenarios is shown in Figures 6 and 10.

Square Matrices Figure 8 presents the % of achieved peak hard-

ware performance for square matrices in all three scenarios. As

COSMA is based on the near optimal schedule, it achieves the high-

est performance in all cases. Moreover, its performance pattern is

the most stable: when the number of cores is not a power of two, the

performance does not vary much compared to all remaining three

implementations. We note that matrix dimensions in the strong

scaling scenarios (m = n = k = 2
14
) are very small for distributed

setting. Yet even in this case COSMA maintains relatively high per-

formance for large numbers of cores: using 4k cores it achieves 35%

of peak performance, compared to <5% of CTF and ScaLAPACK,

showing excellent strong scaling characteristics.

Tall and Skinny Matrices Figure 10 presents the results for

“largeK” matrices - due to space constraints, the symmetric “largeM”

case is omitted. For strong scaling, the minimum number of cores

is 2048 (otherwise, the matrices of sizem = n =17,408, k =3,735,552
do not fit into memory). Again, COSMA shows the most stable

performance with a varying number of cores.

“Flat” Matrices Matrix dimensions for strong scaling are set

to m = n = 2
17 =131,072 and k = 2

9 =512. Our weak scaling

scenario models the rank-k update kernel, with fixed k =256, and
m = n scaling accordingly for the “limited” and “extra” memory

cases. Such kernels take most of the execution time in, e.g., matrix

factorization algorithms, where updating Schur complements is

performed as a rank-k gemm operation [31].

UnfavorableNumber of ProcessorsDue to the processor grid
optimization (§ 7.1), the performance is stable and does not suffer

from unfavorable combinations of parameters. E.g., the runtime

of COSMA for square matricesm = n = k =16,384 on p1 =9,216=
2
10 · 32 cores is 142 ms. Adding an extra core (p2 =9,217= 13 · 709),

does not change COSMA’s runtime, as the optimal decomposition

does not utilize it. On the other hand, CTF for p1 runs in 600 ms,

while for p2 the runtime increases to 1613 ms due to a non-optimal

processor decomposition.

Computation-CommunicationBreakdown Figure 12 presents

the total runtime breakdown of COSMA into computation and com-

munication routines. Combined with the comparison of commu-

nication volumes (Figures 6 and 7, Table 4) we see the importance

of I/O optimization for distributed setting even for traditionally

compute-boundMMM. E.g., for square or “flat”matrix and 16k cores,

COSMA communicates more than two times less than the second-

best (CARMA). Assuming constant time-per-MB, COSMA would

be 40% slower if it communicated that much, being slower than

CARMA by 30%. For “largeK”, the situation is even more extreme,

with COSMA suffering 2.3 times slowdown if communicating 10

times more - as much as the second-best algorithm, CTF.

Detailed Statistical Analysis Figure 13 provides a distribution
of the achieved peak performance across all numbers of cores for

all six scenarios. It can be seen that, for example, in the strong

scaling scenario and square matrices, COSMA is comparable to

the other implementations (especially CARMA). However, for tall-

and-skinny matrices with limited memory available, COSMA lowest
achieved performance is higher than the best performance of CTF and
ScaLAPACK.

total comm. volume per rank [MB] speedup

shape benchmark ScaLAPACK CTF CARMA COSMA min mean max

A C

B strong scaling 203 222 195 107 1.07 1.94 4.81
limited memory 816 986 799 424 1.23 1.71 2.99
extra memory 303 350 291 151 1.14 2.03 4.73

A C

B
strong scaling 2636 2278 659 545 1.24 2.00 6.55
limited memory 368 541 128 88 1.30 2.61 8.26
extra memory 133 152 48 35 1.31 2.55 6.70

C

B

A

strong scaling 3507 2024 541 410 1.31 2.22 3.22
limited memory 989 672 399 194 1.42 1.7 2.27
extra memory 122 77 77 29 1.35 1.76 2.8

A C

B strong scaling 134 68 10 7 1.21 4.02 12.81
limited memory 47 101 26 8 1.31 2.07 3.41
extra memory 15 15 10 3 1.5 2.29 3.59

overall 1.07 2.17 12.81
Table 4: Average communication volume per MPI rank and measured speedup of COSMA vs the
second-best algorithm across all core counts for each of the scenarios.
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Figure 8: Achieved % of peak performance by COSMA, CTF, ScaLAPACK and CARMA for square matrices, strong and weak scaling. We show median and 95% confidence intervals.
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Figure 9: Total runtime of COSMA, CTF, ScaLAPACK and CARMA for square matrices, strong and weak scaling. We show median and 95% confidence intervals.
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Figure 10: Achieved % of peak performance by COSMA, CTF, ScaLAPACK and CARMA for “largeK” matrices, strong and weak scaling. We show median and 95% confidence intervals.
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Figure 11: Total runtime of COSMA, CTF, ScaLAPACK and CARMA for “largeK” matrices, strong and weak scaling. We show median and 95% confidence intervals.

10 RELATEDWORK
Works on data movement minimization may be divided into two

categories: applicable across memory hierarchy (vertical, also called

I/O minimization), or between parallel processors (horizontal, also

called communication minimization). Even though they are “two

sides of the same coin”, in literature they are often treated as sep-

arate topics. In our work we combine them: analyze trade–offs

between communication optimal (distributed memory) and I/O

optimal schedule (shared memory).
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10.1 General I/O Lower Bounds
Hong andKung [34] analyzed the I/O complexity for general CDAGs

in their the red-blue pebble game, on which we base our work. As

a special case, they derived an asymptotic bound Ω
(
n3/
√
S
)
for

MMM. Elango et al. [23] extended this work to the red-blue-white

game and Liu and Terman [40] proved that it is also P-SPACE com-

plete. Irony et al. [33] extended the MMM lower bound result to

a parallel machine with p processors, each having a fast private

memory of size S , proving the
n3

2

√
2p
√
S
− S lower bound on the

communication volume per processor. Chan [12] studied differ-

ent variants of pebble games in the context of memory space and

parallel time. Aggarwal and Vitter [2] introduced a two-memory

machine that models a blocked access and latency in an external

storage. Arge et al. [3] extended this model to a parallel machine.

Solomonik et al. [50] combined the communication, synchroniza-

tion, and computation in their general cost model and applied it

to several linear algebra algorithms. Smith and van de Geijn [47]

derived a sequential lower bound 2mnk/
√
S − 2S for MMM. They

showed that the leading factor 2mnk/
√
S is tight. We improve this

result by 1) improving an additive factor of 2S , but more importantly

2) generalizing the bound to a parallel machine. Our work uses a

simplified model, not taking into account the memory block size,

as in the external memory model, nor the cost of computation. We

motivate it by assuming that the block size is significantly smaller

than the input size, the data is layout contiguously in the memory,

and that the computation is evenly distributed among processors.

10.2 Shared Memory Optimizations
I/O optimization for linear algebra includes such techniques as

loop tiling and skewing [58], interchanging and reversal [57]. For

programs with multiple loop nests, Kennedy and McKinley [35]

showed various techniques for loop fusion and proved that in gen-

eral this problem is NP-hard. Later, Darte [20] identified cases when

this problem has polynomial complexity.

Toledo [54] in his survey on Out-Of-Core (OOC) algorithms

analyzed various I/O minimizing techniques for dense and sparse

matrices. Mohanty [42] in his thesis optimized several OOC algo-

rithms. Irony et al. [33] proved the I/O lower bound of classical

MMM on a parallel machine. Ballard et al. [5] proved analogous

results for Strassen’s algorithm. This analysis was extended by Scott

et al. [45] to a general class of Strassen-like algorithms.

Although we consider only dense matrices, there is an extensive

literature on sparse matrix I/O optimizations. Bender et al. [7] ex-

tended Aggarwal’s external memorymodel [2] and showed I/O com-

plexity of the sparse matrix-vector (SpMV) multiplication.

Greiner [29] extended those results and provided I/O complexi-

ties of other sparse computations.

10.3 Distributed Memory Optimizations
Distributed algorithms for dense matrix multiplication date back to

the work of Cannon [10], which has been analyzed and extended

many times [30] [39]. In the presence of extra memory, Aggarwal

et al. [1] included parallelization in the third dimension. Solomonik

and Demmel [52] extended this scheme with their 2.5D decom-

position to arbitrary range of the available memory, effectively

interpolating between Cannon’s 2D and Aggarwal’s 3D scheme. A

recursive, memory-oblivious MMM algorithm was introduced by

Blumofe et al. [9] and extended to rectangular matrices by Frigo et

al. [26]. Demmel el al. [22] introduced CARMA algorithm which

achieves asymptotic complexity for all matrix andmemory sizes.We

compare COSMA with these algorithms, showing that we achieve

better results both in terms of communication complexity and the

actual runtime performance. Lazzaro et al. [38] used the 2.5D tech-

nique for sparse matrices, both for square and rectangular grids.

Koanantakool et al. [37] observed that for sparse-dense MMM, 1.5D

decomposition performs less communication than 2D and 2.5D

schemes, as it distributes only the sparse matrix.

11 CONCLUSIONS
In this work we present a newmethod (Lemma 3) for assessing tight

I/O lower bounds of algorithms using their CDAG representation

and the red-blue pebble game abstraction. As a use case, we prove a

tight bound forMMM, both for a sequential (Theorem 1) and parallel

(Theorem 2) execution. Furthermore, our proofs are constructive:

the COSMA algorithm is near I/O optimal (up to the factor of
√
S

√
S+1−1

, which is less than 0.04% from the lower bound for 10MB of

fast memory) for any combination of matrix dimensions, number of

processors and memory sizes. This is in contrast with the current

state-of-the-art algorithms, which are communication-inefficient

in some scenarios.

To further increase the performance, we introduce a series of

optimizations, both on an algorithmic level (processor grid opti-

mization (§ 7.1) and blocked data layout (§ 7.6)) and hardware-

related (enhanced communication pattern (§ 7.2), computation-

communication overlap (§ 7.3), one-sided (§ 7.4) communication).

The experiments confirm the superiority of COSMA over the other

analyzed algorithms - our algorithm significantly reduces commu-

nication in all tested scenarios, supporting our theoretical analysis.

Most importantly, our work is of practical importance, being main-

tained as an open-source implementation and achieving a time-to-

solution speedup of up to 12.8x times compared to highly optimized

state-of-the-art libraries.

The important feature of our method is that it does not require

any manual parameter tuning and is generalizable to other machine

models (e.g., multiple levels of memory) and linear algebra kernels

(e.g., LU or Cholesky decompositions), both for dense and sparse

matrices. We believe that the “bottom-up” approach will lead to

developing more efficient distributed algorithms in the future.
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