
Towards Million-Server Network Simulations on Just a Laptop
Maciej Besta†, Marcel Schneider†, Salvatore Di Girolamo, Ankit Singla, Torsten Hoefler

Department of Computer Science, ETH Zurich
†Both authors contributed equally to this work

ABSTRACT
The growing size of data center and HPC networks pose unprece-
dented requirements on the scalability of simulation infrastructure.
The ability to simulate such large-scale interconnects on a simple
PC would facilitate research efforts. Unfortunately, as we first show
in this work, existing shared-memory packet-level simulators do
not scale to the sizes of the largest networks considered today. We
then illustrate a feasibility analysis and a set of enhancements that
enable a simple packet-level htsim simulator to scale to the un-
precedented simulation sizes on a single PC. Our code is available
online and can be used to design novel schemes in the coming era
of omnipresent data centers and HPC clusters.

CCS CONCEPTS
• Networks → Network simulations; Network performance
evaluation; Network performance analysis; Network experi-
mentation; Data center networks; Packet-switching networks;

KEYWORDS
Network simulation, scalable simulation, large-scale simulation,
packet-level simulation, data center networks, HPC networks, htsim

Implementation:
http://spcl.inf.ethz.ch/Research/Scalable_Networking/FatPaths/

1 INTRODUCTION
Interconnection networks play an important role in today’s large-
scale computing systems [13, 34, 50, 59]. Large networks with tens
of thousands of nodes are deployed in warehouse-sized HPC and
data centers [30, 48]. Future exascale supercomputers as well as
mega data centers will require even larger scales with hundreds of
thousands of servers.

To enable effective design and analysis of such large-scale net-
works and the associated routing protocols, one must resort to simu-
lation. There exist various simulators that can be largely categorized
into flow-level and packet-level. Flow-level simulators enable evalu-
ation of large-scale systems, but their coarse design based on flows
hinders realistic insights into performance. Packet-level simulators
such as OMNeT++ [61] offer a more detailed packet-based model
of the network and routing, but they scale poorly. Usual counts of
servers in simulated topologies oscillate between a hundred [52]
and ten thousand [42]. Tools that simulate large-scale networks,
for example ROSS/CODES [25], use distributed-memory supercom-
puters and clusters [63] that are unavailable to most researchers.
Ideally, we want to be able to simulate largest-scale networks on a
simple commodity machine, such as a PC.

We illustrate how to achieve the above goal. In the first contribu-
tion, we analyze a broad selection of available simulators and show
that none scales to the desired sizes of hundreds of thousands of

servers (§ 2). As the second contribution, we conduct a feasibility
analysis in which we argue that million-server packet-level simula-
tors should in theory be achievable on a simple PC (§ 3). In the final
key contribution, we conduct large-scale simulations using the pop-
ular OMNeT++ [61] and htsim [52] simulators (§ 4). We discuss the
configuration of such simulations, illustrate the necessary modifica-
tions to the simulation infrastructure, and analyze their scalability
and bottlenecks. Then, we present results of evaluating networks
using htsim, with 10k, 100k, and 1M servers, and we discuss the
limitations of OMNeT++ which prevents reaching such large scales
beyond 10k servers. To enable testing state-of-the-art designs, we
provide the implementations of popular protocols in OMNeT++,
including ECN [53], ECMP [39], MPTCP [29], DCTCP [3], and
LetFlow [60]. Our codes are available online.

2 BACKGROUND AND RELATEDWORK
We first introduce the basic concepts.

2.1 Networks
We model an interconnection network as an undirected graph 𝐺 =

(𝑉 , 𝐸); 𝑉 and 𝐸 are sets of vertices and edges. A vertex models
a router1 (|𝑉 | = 𝑁𝑟). An edge models a full-duplex inter-router
physical link. Servers are modeled implicitly. There are 𝑁 servers
in total. 𝜆 and 𝑣 are the flow arrival rate [flows/s] and the flow
volume [bytes] of a used workload.

We consider the following networks, focusing on recent low-
diameter designs. Slim Fly [13] is a state-of-the-art cost-effective
topology that outperforms virtually all other targets in most met-
rics by optimizing its structure towards the Moore Bound [38].
HyperX [2] (Hamming graph) generalizes hypercubes [22] and
Flattened Butterflies [44]. Dragonfly [45] is an established hierar-
chical network. Jellyfish [57] is a random regular graph with good
expansion properties [22]. Xpander [59] resembles JF but has a
deterministic construction variant. Fat tree [47], a widely used in-
terconnect, is similar to the Clos network [24] with disjoint inputs
and outputs and unidirectional links. We use three-stage diameter-4
FTs; fewer stages reduce scalability while more stages lead to high
diameters. Some works exist into the routing of such networks,
with simulation data available [8, 11, 20].

2.2 Simulations
We describe packet-level simulations and comprehensively compare
them to flow-level simulations.

2.2.1 Packet-Level Simulations. We simulate a network using
packet-level simulation. All actions in the simulation are modeled as
events, which are scheduled to happen at a given point in time. For

1We abstract away HW details and use a term “router” for both L2 switches and L3
routers.

ar
X

iv
:2

10
5.

12
66

3v
1

 [
cs

.N
I]

 2
6

M
ay

 2
02

1

Simulator Type∗ Scalability [#servers]∗∗ Design∗∗∗

SimGrid/SMPI [23] F 3,440 [26] SM
LogGOPSim [37] F 1,000,000 [36] SM

LogGOPSim [35] P 1024 [35] SM
hoefler2017spin htsim [52] P 128 [52] SM
NS2 [40] P <1,000 SM
booksim [42] P 10,000 [13] SM
FOGSim [31] P 16,512 [7] SM

NS3 [1] P 5,000 [51] DM
NS4 [28] P N.A. DM
BigSim [64] P 46,656 [41] DM
SST [54] P 110,592 [33] DM
xSim [21] P 2,097,152 [27] DM

ROSS/CODES [25] P
1,000,000 [63] (Slim Fly),
50,000,000 [49] (Dragonfly) DM

Enhanced OMNet++ [this work] P 17,000 (full TCP/IP stack) SM
Enhanced htsim [this work] P 1,000,000 SM

Table 1: The comparison of available network simulators. ∗“Type” is either “P”
(packet-level) or “F” (flow-level). ∗∗“Scalability” is the largest size of a topol-
ogy (simulated with a specific simulator) that we were able to find in the lit-
erature. ∗∗∗“Design” includes the details of the compute platform used for
simulations in the “Scalability” column: “SM” indicates the shared-memory
design, “DM” means the distributed-memory design.

each event, some code is executed, which can update the state of the
simulation, and produce new events that are scheduled to happen
in the future. The main simulation loop keeps the scheduled events
in a priority queue and advances the simulation by dequeuing and
executing successive events.

2.2.2 Flow-Level Simulations. Flow-level simulations assume a
continuous, real-valued flow model. Each flow has a rate 𝜇 ∈ R+.
The sum of all flows on each linkmust not exceed the capacity of the
cable. Without any additional constraints, this leads to constrained
max-flow solutions in the topology graph. Other constrains (e.g.,
on the routes that can be taken by specific flows) lead to more
realistic upper-bounds for performance of various routing schemes
on specific topologies. However, since thesemodels do not represent
time accurately, they are unable to estimate latency or provide
realistic insights into the impact of routing choices on flow control.

2.3 Simulators
We also discuss available network simulators. The overview is
in Table 1. In our work, we focus on enhancing two simulators:
OMNeT++ [61] and htsim [52].

2.3.1 htsim. The htsim simulator [52] provides a lightweight
infrastructure that only models the transport layer: there is no
model for links or switches. Instead, the route for each packet is
pre-computed as a sequence of queues that the packet will pass
through. Such a route specification is attached to the packet. Each
queue has a finite service rate, which models the link capacity.
Due to this design, htsim is highly flexible, and new topologies
can be added straightforwardly: the topology only affects the route
computation, which is explicitly called for every flow during its
setup. The disadvantage is that many adaptive routing schemes
cannot be modeled, since there is no per-switch state that could
affect the routing. Furthermore, all flows are initialized before the
first event is processed, and all routes are kept in memory. It may
limit the simulation of high path diversity networks like Fat Tree.

We use htsim because it supports modern schemes such as NDP [34]
and its simple design enables high default scalability.

2.3.2 OMNeT++/INET. OMNeT++ [61] is a discrete-event sim-
ulation framework with extensive functionality, including an IDE
for development and data analysis, and a visualization tool. OM-
NeT++ itself does not include network models, and it is not limited
to computer network simulations. It needs to be combined with
a model library, which provides components that can be used to
model the system of interest. One such library is INET [62] which
provides models for many internet technologies, including multiple
implementations of TCP, various L1 technologies such as Ethernet
switches and buses, wireless protocols, and application-level mod-
els, for example those of web browsers. INET is not primarily aimed
at data center networks, but it includes all the basic technologies,
including L2 protocols such as ARP. Modern data center technolo-
gies are not present in INET, but could easily be added thanks to
the extensible structure of INET.We use OMMeT++ combined with
INET [62] because it simulates the full TCP/IP stack and because its
code is extensible.

3 FEASIBILITY ANALYSIS
We first analyze the approximate memory and time cost of tar-
geted large-scale simulations. Our goal is to illustrate that large-
scale shared-memory packet-level simulations on a commodity PC
should in theory be feasible.

3.1 Number of Simulation Elements
We estimate the number of elements of a simulated topology (e.g.,
servers) and of a simulated workload (e.g., flows which require flow
control state). The results of the analysis are in Table 2. The number
of network elements does not pose the most serious scalability
problems. Instead, the number and the corresponding size of elements
related to workloads dominates the memory usage and the running
time.

3.2 Memory and Time Requirements
The total memory usage and simulation time depend on the simu-
lation software and on granularity, i.e., what elements of the sim-
ulated workload are explicitly stored and simulated. We estimate
these numbers in Table 2.

Table 2 also shows what may not be feasible in the largest-scale
simulations. Specifically, we cannot simulate large workloads on
large networks, and must not store any per-packet state. Another
issue can be high path diversity, since the simulator in this example
computes and stores all paths ahead of time, leading to a high
per-path overhead.

3.2.1 Memory. The lowest required amount of memory is de-
termined by the number of simulated flows. This is because we
want to simulate end-to-end flow control for each flow. Thus, the
flow control algorithm state for each flow needs to be saved. We
also account for the packets in flight on a per-flow basis, since the
memory occupied by packets is tightly coupled to the number of
concurrent flows. We observe a memory consumption of about
2kB/flow plus 600B/path, which could probably be further reduced,
but flow control and packet state put a hard lower bound on the

2

Element Range (lower–upper bounds) 10,000 servers 100,000 servers 1,000,000 servers

Count
(relative)

Count
(total)

Memory
(per item)

Count
(relative)

Count
(total)

Memory
(total)

Count
(relative)

Count
(total)

Memory
(total)

Count
(relative)

Count
(total)

Memory
(total)

N
et
w
or
k switch 1 102–104 (1) 1 242 (1) 1 1,058 (1) 1 5,618 (1)

cable (per switch) 10–1000 104–106 (1) (4) 8.5+40 11,737 (1) (4) 17.5+90 113,735 (1) (4) 39.5+200 1,345,511 (1)
server (per switch) 10–1000 104–106 5kB 40 9,680 47MB 90 95,220 460MB 200 1,123,600 5.4GB
routing entries 𝑂

(
𝑁 2
𝑟

)
104–108 (2) 100B 𝑂

(
𝑁 2
𝑟

)
58,564 6MB 𝑂

(
𝑁 2
𝑟

)
1,119,364 110MB 𝑂

(
𝑁 2
𝑟

)
31,561,924 3GB

W
or
kl
oa
d task (per server) 1-10 102–105 (1) 1 968,0 (1) 1 95,220 (1) 1 1,123,600 (1)

flow (per task) 1-100 102–107 2kB 100 968,000 1.8GB 10 952,200 1.8GB 1 1,123,600 2.1GB
path (per flow) 1-10 102–108 600B 5 4,840,000 2.7GB 5 4,761,000 2.7MB 5 5,618,000 3.2GB
packet (per flow) 10-1000 103–1010 (3) (5) 110 106,480,000 (3) (5) 110 104,742,000 (3) (5) 110 123,596,000 (3)

Table 2: Estimation of the number of elements of a data center simulation. The numbers and thus required resources vary widely depending on a chosen config-
uration. “Range” lists parameter bounds considered in this work, in the following columns we show numbers for example configurations. Memory estimates are
based on htsim. The chosen workload parameters keep the simulations feasible on a laptop (configuration details are in § 4). 1 Negligible for relevant configura-
tions. 2 Data depends on the routing scheme. 3 Objects are transient and accounted for in the flow counts. 4 Inter-router cables + server links. 5 The average over
the flow size distribution, excluding retransmissions.

memory use. To make large simulations feasible, it is crucial to
keep the per-flow overhead low. Special attention needs to be paid
to monitoring and debugging code, which can easily dominate the
per-flow state. For very large networks, the quadratically increasing
size of the routing tables starts to dominate, but as Table 2 shows,
this was not a problem for our simulations.

3.2.2 Time. The lowest amount of time is determined by the
amount of packet forwarding. Each packet forwarding has to be
processed as at least one event, and these events constitute the ma-
jority of simulation time. In the considered low-diameter networks,
each packet has to be forwarded ≈4 times to reach its destination,
and we observed around 60 events processed for each transmit-
ted packet (this includes entering and leaving queues on the path
through the network, for the data packet as well as the ACK packet
and potential retransmissions). We observe event rates of around
106 per second on one CPU core. Since each event likely causes at
least one cache miss, we cannot expect much higher rates without
distributed simulation, which is outside the scope of this work.

3.3 Discussion and Takeaway
The scenarios listed in Table 2 can all be simulated within about
three hours on a standard laptop with 16GB of memory, while be-
ing comparable to the largest available packet-level data center
network simulations. On a server, even larger simulations are fea-
sible. Distributed simulation allows even further scaling, but at a
considerable cost in software complexity [25]. One important angle
of enhancement is to increase the simulation intensity (e.g., count
of flows).

4 LARGE-SCALE SIMULATIONS
We now proceed to describe large-scale simulations.

4.1 Simulation Setup
We start with providing the simulation setting.

4.1.1 Machine. All simulationswere performed on a laptopwith
16GB of memory and a Intel Core i7-8550U CPU. The computation
time was between 1h and 3h for each simulation.

4.1.2 Networks. We simulate networks of ≈10k, ≈100k, and
≈1M servers. The networks are 5× oversubscribed with respect

to a full bandwidth design: This represents networks similar to
the ones analyzed by Kassing et al. [43]. The oversubscription also
makes the simulation of a 1M server instance feasible on a laptop
(cf. Table 2). The used Slim Fly is still larger than the one analyzed
(on a supercomputer) by Wolfe et al. [63] with respect to the server
count.

4.1.3 Workloads. We use a simple synthetic workload model,
where pairs of communicating servers are located at routers cho-
sen uniformly at random. This enables flexibility: we can adapt
the workload size for any network topology without changing
workload properties, which is important for comparisons across
topologies. Such a fixed random permutation pattern (in which all
outgoing flows of one host have the same destination), in contrast to
a more common random-uniform communication graph (a destina-
tion host is picked uniformly at random for each flow) leads to a less
uniform load distribution in the network. This puts more pressure
on load balancing within the network, a feature that we specifi-
cally evaluated. However, for a complete analysis, we also consider
skewed non-randomized workloads. Such traffic patterns are to a
certain degree a proxy of today’s modern communication-intense
irregular workloads such as graph processing [8–10, 10, 14, 19, 55]
or .

The ultimately limiting factor for workloads is the high cost of
simulating a large network. At the targeted scales, we can only
simulate a few milliseconds of operation at a reasonable cost. While
it may not suffice to get the network into a state that represents real-
world operation well, it is sufficient to obtain the overall impression
of network performance,

4.1.4 Flow Arrival Model. The flow model defines the sizes and
arrival times of flows on each server. In our simulations, for feasible
simulation times, we use a fixed set of flows, but with random
arrival times over a fixed range. This means that the number of
packets in each simulation run is approximately constant.

4.1.5 Performance Metrics. A fundamental performance metric
is the finishing time of the last flow in a workload. However, this
metric is the maximum of a distribution, and therefore most likely
an outlier. Thus, we also consider the distribution of individual flow
completion times (FCT), as a function of flow size. The mean of the
FCT distribution is a summary of the overall network performance.
The tail towards higher FCT predicts performance for applications

3

that are sensitive to tail latency. We obtain one FCT distribution
per flow size, since the time to complete a flow depends on the
transferred data amount. We can normalize this by considering
the flow throughput, that is the flow size divided by the FCT. Yet,
this hides an important detail of network performance: the tradeoff
between latency and throughput (FCT is latency-bound for short
flows, but throughput-bound for long flows). Thus, we decided to
display FCT as a function of flow size. If this is infeasible, we select
one specific, representative flow size.

As we simulate flow arrivals only in a fixed time window, but
the FCT is flow size dependent, the impact of our approach varies
with the flow size. Specifically, short flows might start and finish
before any queues are filled and show unrealistically low latency.
Next, long flows are unlikely to finish when the flow injection
window ends, and observe lower network load. We can avoid the
first effect by ignoring the earliest flows, but avoiding the latter
effect may be much harder: depending on the network performance,
it might be impossible for any long flow to complete during the
injection window, and ignoring flows that complete after the flow
injections ended would lead to a bias towards the better performing
flows. Thus, we accept that the results for long flows can only be
considered meaningful in relative comparisons to other simulations
with the same workload model.

4.1.6 Parameters. We use the following parameters:
Flow Sizes (𝑣) Flow sizes 𝑣 are chosen according to the pFabric
web search distribution [4], discretized to 20 flow sizes, with the
average 𝑣 ≈1MB.
Injection Rates (𝜆)We vary 𝜆 ∈ {40, 50, 60} [flows/server/s]. For
too high injection rates, the network is unable to serve all the flows
and throughput collapses, since the arrival process is independent
of flow completion. In this case, the simulation may take much
longer than expected, since multiple retransmissions for each data
packet need to be simulated.
Analysis and DisplayWe measure the completion time for each
flow and display it as a function of flow size. Since the flow com-
pletion times are a random distribution, we consider their mean,
10% and 99%-iles, and histograms.
Flow and Congestion ControlWe focus on NDP congestion con-
trol [34], but we also evaluated DCTCP [3] and standard TCP in
combination with LetFlow [60]. For NDP, we use 9kB jumbo frames,
an 8-packet congestion window, and a queue length of 8 full-size
packets. We disable NDP fast start by injecting the first packets
truncated at the sender, to avoid packet loss due to uncontrolled
injections by short flows.

4.1.7 Collecting Statistics. Monitoring and recording data is
expensive in large-scale simulations. We found that storing per-
packet (or even smaller granularity) data is infeasible even for smaller
(𝑁 < 10, 000) simulations. Instead, we focus on quantities that can
be aggregated per flow, host, link, or switch. Still, there are millions
of flows in large simulations, and the resulting output is significant.
For visualization, we use aggregates such as mean, maximum, or
histograms, grouped by some parameter of interest, such as flow
length.

4.2 Scalability of Simulators
We now illustrate several enhancements to the used simulators that
enable evaluating larger networks.

4.2.1 OMNeT++/INET. The IP configuration in INET is loaded
from an XML file, where we hit various scalability problems. In
many places, the translation of rules in the XML file into in-memory
data structures shows quadratic𝑂

(
𝑁 2) behavior due to linear-time

searches over the set of configuration rules. Our modifications add
faster heuristics for loading the structure of our auto-generated
configuration files.

The GUI monitoring tools are not usable for networks of 10,000s
of elements, and the output becomes unmanageably large when
anything but simple scalar counters are used. Therefore, our mon-
itoring is based on scalar measurements of various quantities on
a per-object level, with a custom parser for the OMNeT++ output
format to ingest this data into SQLite tables. Even with this lim-
ited recording, we hit scalability problems in the OMNeT++ core.
Specifically, there was quadratic behavior due to deletions from
std::vector in the code that manages monitored quantities. We
had to patch OMNeT++ to remove the specific feature with the
offending code, since it ran even when the feature was not used.

OMNeT++ supports parallel discrete event simulation using its
parsim mode. However, it turned out that the INET package at
version 3.4 does not support parsim. We fixed this by providing the
required serialization calls and removing some checks within INET,
which would fail if only a part of the network is in memory (this
is the case with parsim, which splits the network into partitions
that are each simulated by an independent process, communicating
via MPI). The feasibility of parallel or distributed simulations is a
topic outside the scope of this work; However, we observed that
a parallel simulation with multiple processes on one CPU could
provide a 2× speedup when memory consumption would not allow
running multiple parallel jobs.

Further, we observed bugs in rare circumstances, where packets
would appear with incorrect MAC addresses; we could only work
around this by dropping the affected packets. This affected less than
one packet in a million.

4.2.2 htsim. As htsim is a library of modules to build a network
simulator, rather than an integrated network simulation solution,
htsim is less affected by scalability problems. Yet, existing sample
programs were not well suited to our scenario, and we had to
add a more efficient, routing table based routing algorithm for
arbitrary topologies. We do not use the provided logging solution,
which tends to produce too much output at the simulation scales
that we consider. Instead, the statistics of each flow are printed in
text format to standard output when the flow finishes. Another
scalability obstacle was the net_paths structure present in the
sample programs, a preallocated 𝑁 2 size matrix of routes, which
would only be sparsely populated for permutation workloads and
would dominate memory use for large networks.

Since htsim does not use a network model for its simulation, but
rather pre-computes the list of queues that a packet will traverse on
its way, the memory occupied by these routes becomes a limiting
factor, especially for networks with high path diversity. This could

4

Dragonfly (diameter=3) Fat Tree (diameter=4) HyperX (diameter=2) HyperX (diameter=3) Slim Fly (diameter=2) Xpander (diameter=3)

101 102 103 104 101 102 103 104 101 102 103 104 101 102 103 104 101 102 103 104 101 102 103 104

0.1

1.0

10.0

100.0

flow size (KiB)

(1
0%

, m
ea

n,
 9

9%
) F

C
T

[m
s]

given topology comparable Jellyfish (built with the same equipment)

mean

10%

99%

mean

10%

99%

mean

10%

99%

mean

10%

99%

10%

99%

10%

99%

mean mean

Networks of comparable cost (except for
HyperXes that have very high radix)

Figure 1: Comparison of topologies on full-bandwidth configurations (𝑁 ≈10k servers).

10K servers, λ = 50/s

101 102 103 104

0.1

1.0

10.0

flow size (KB)

(1
0%

,
m

ea
n,

 9
9%

) F
C

T
[m

s]

Jellyfish Slim Fly

mean

10%

99%

v = 200KB, λ = 50/s

10K
100K

1M

0.0 2.5 5.0 7.5 10.0

101

103

101

103

101

103

FCT (ms)

co
un

t

Jellyfish Slim Fly

10K servers 100K servers 1M servers

v = 200K
B

40 50 6040 50 6040 50 60

0.5

1.0

2.0

arrival rate (flows/s)
(1

0%
,

m
ea

n,
 9

9%
) F

C
T

[m
s]

Jellyfish Slim Fly

mean

10%

99%

mean

10%

99%

mean

10%

99%

Figure 2: Results of large-scale simulations (𝑁 ≈1M servers).

easily be optimized, but not without significant changes to the
htsim codebase.

4.3 Performance Analysis
We now analyze the performance of htsim with the applied mod-
ifications. We first analyze performance of different 10k server
networks, see Figure 1. For each server, 40 flows are simulated at an
arrival rate of 300 per second. Each topology is compared to a Jelly-
fish network built of the same hardware. Jellyfish outperforms the
other topologies with the exception of Slim Fly (similar FCTs to the
equivalent Jellyfish) and Xpander (identical FCTs to the equivalent
Jellyfish).

Next, we analyze 10k, 100k, and 1M server simulations, see Fig-
ure 2. The left plot shows FCT as a function of size. For long flows
(𝑣 > 200kB), FCT is limited by bandwidth, while for shorter flows,
latency dominates. The middle plot illustrates the distribution of
FCTs for middle-size flows: here, the better tail behavior of the
randomized Jellyfish topology is clearly visible. In the right plot, we
show the impact of the flow arrival rate 𝜆. Even a small increase in
load causes a large degradation in FCT in the considered networks,
this is due to the used oversubscription. The 1M server simulation
is less affected due to the limited warmup time.

Various scalability issues in OMNeT++ prevented us from reach-
ing the desired scale of 1M servers. However, we were still able to

extensively simulate all the considered topologies of sizes around
10,000 endpoints, with the full TCP/IP stack. Extensive results are
elsewhere [20].

4.4 Discussion and Takeaway
Our analysis illustrates that million-server packet-level simulations
on a simple commodity laptop are feasible. However, they require
some compromises on the quality of simulation, most importantly
on the number of allowed flows and on the methodology (i.e., simu-
lating a fixed amount of flows instead of a fixed time window after
reaching a steady-state).

An important direction of future work is also considering
more realistic large-scale distributed workloads (e.g., using traces),
such as different Remote Direct Memory Access based applica-
tions [12, 15, 32, 56], deep learning training and inference [5, 6],
communication-intense linear algebra kernels [46], or irregular
processing [16–18, 58].

5 CONCLUSION
The growing network sizes go in tandem with the increasing size
and complexity of distributed workloads and underlying routing
and switching schemes. The effective design and analysis of such
networks and protocols requires simulation. Unfortunately, today’s

5

simulators do not scale to the sizes of interconnects in large data
centers and HPC clusters.

In this work, we investigate how to run packet-level simulators
of such largest networks on a simple commodity PC laptop. For
this, we analyze the scalability of existing simulators, investigate
the feasibility of our goal, introduce modifications to the popular
OMNeT++ and htsim tools, discuss methodological tradeoffs that
must be taken, and illustrate example simulations of 10k, 100k, and
1M servers on htsim, focusing on the popular topologies such as fat
trees and modern designs such as Slim Fly. Our work will facilitate
research into modern networking.

REFERENCES
[1] Network Simulator 3. 2018.
[2] J. H. Ahn, N. Binkert, A. Davis, M.McLaren, and R. S. Schreiber. HyperX: topology,

routing, and packaging of efficient large-scale networks. In SC, 2009.
[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data center TCP (DCTCP). SIGCOMM CCR, 2011.
[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and

S. Shenker. pFabric: Minimal near-optimal datacenter transport. SIGCOMM
CCR, 2013.

[5] T. Ben-Nun, M. Besta, S. Huber, A. N. Ziogas, D. Peter, and T. Hoefler. A modu-
lar benchmarking infrastructure for high-performance and reproducible deep
learning. arXiv preprint arXiv:1901.10183, pages 66–77, 2019.

[6] T. Ben-Nun and T. Hoefler. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Computing Surveys (CSUR), 52(4):1–43,
2019.

[7] M. Benito, E. Vallejo, and R. Beivide. On the use of commodity ethernet technol-
ogy in exascale HPC systems. In HiPC, 2015.

[8] M. Besta, A. Carigiet, Z. Vonarburg-Shmaria, K. Janda, L. Gianinazzi, and T. Hoe-
fler. High-performance parallel graph coloring with strong guarantees on work,
depth, and quality. In ACM/IEEE Supercomputing, pages 1–17, 2020.

[9] M. Besta et al. Graph-minesuite: Enabling high-performance and programmable
graph mining algorithms with set algebra. Unpublished report, 2021.

[10] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler. Practice of streaming
processing of dynamic graphs: Concepts, models, and systems. arXiv preprint
arXiv:1912.12740, 2019.

[11] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun, O. Mutlu, and
T. Hoefler. Slim noc: A low-diameter on-chip network topology for high energy
efficiency and scalability. ACM SIGPLAN Notices, 53(2):43–55, 2018.

[12] M. Besta and T. Hoefler. Fault tolerance for remote memory access programming
models. In Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing, pages 37–48. ACM, 2014.

[13] M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topol-
ogy. In SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 348–359. IEEE, Nov. 2014.
ACM/IEEE Supercomputing.

[14] M. Besta and T. Hoefler. Accelerating irregular computations with hardware
transactional memory and active messages. In Proceedings of the 24th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
pages 161–172. ACM, 2015.

[15] M. Besta and T. Hoefler. Active access: A mechanism for high-performance
distributed data-centric computations. In Proceedings of the 29th ACM on Inter-
national Conference on Supercomputing, pages 155–164. ACM, 2015.

[16] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoefler, and
E. Solomonik. Communication-efficient jaccard similarity for high-performance
distributed genome comparisons. In 2020 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1122–1132. IEEE, 2020.

[17] M. Besta, F. Marending, E. Solomonik, and T. Hoefler. Slimsell: A vectorizable
graph representation for breadth-first search. In Proc. IEEE IPDPS, volume 17,
pages 32–41. IEEE, 2017.

[18] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels,
G. Alonso, and T. Hoefler. Demystifying graph databases: Analysis and taxon-
omy of data organization, system designs, and graph queries. arXiv preprint
arXiv:1910.09017, 2019.

[19] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler. To push or to
pull: On reducing communication and synchronization in graph computations.
In Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing, pages 93–104. ACM, 2017.

[20] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Henriksson, S. Di Girolamo,
A. Singla, and T. Hoefler. Fatpaths: Routing in supercomputers and data cen-
ters when shortest paths fall short. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–18. IEEE,

2020.
[21] S. Böhm and C. Engelmann. xsim: The extreme-scale simulator. In High Per-

formance Computing and Simulation (HPCS), 2011 International Conference on,
pages 280–286. IEEE, 2011.

[22] J. A. Bondy and U. S. R. Murty. Graph theory with applications. Macmillan
London, 1976.

[23] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova, and M. Quinson.
Single node on-line simulation of mpi applications with smpi. In Parallel &
Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 664–
675. IEEE, 2011.

[24] C. Clos. A study of non-blocking switching networks. Bell Labs Technical Journal,
1953.

[25] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, and R. Ross. Codes: Enabling
co-design of multilayer exascale storage architectures. In WEST, 2011.

[26] F. Desprez, G. S. Markomanolis, and F. Suter. Improving the accuracy and
efficiency of time-independent trace replay. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages 446–455.
IEEE, 2012.

[27] C. Engelmann. Scaling to a million cores and beyond: Using light-weight sim-
ulation to understand the challenges ahead on the road to exascale. Future
Generation Computer Systems, 30:59–65, 2014.

[28] C. Fan, J. Bi, Y. Zhou, C. Zhang, and H. Yu. NS4: A P4-driven Network Simulator.
In SIGCOMM Posters and Demos, 2017.

[29] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. RFC 6824, TCP extensions
for multipath operation with multiple addresses. 2013.

[30] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu, F. Qiao,
et al. The Sunway TaihuLight supercomputer: system and applications. Science
China Information Sciences, 2016.

[31] M. Garcıa, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide. FOGSim inter-
connection network simulator, 2014.

[32] R. Gerstenberger, M. Besta, and T. Hoefler. Enabling highly-scalable remote
memory access programming with mpi-3 one sided. Scientific Programming,
22(2):75–91, 2014.

[33] T. Groves, R. E. Grant, S. Hemmer, S. Hammond, M. Levenhagen, and D. C.
Arnold. (sai) stalled, active and idle: Characterizing power and performance
of large-scale dragonfly networks. In Cluster Computing (CLUSTER), 2016 IEEE
International Conference on, pages 50–59. IEEE, 2016.

[34] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and
M. Wójcik. Re-architecting datacenter networks and stacks for low latency and
high performance. In SIGCOMM Conference, 2017.

[35] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell. sPIN:
High-performance streaming Processing in the Network. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 59. ACM, 2017.

[36] T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the influence of
system noise on large-scale applications by simulation. In SC, 2010.

[37] T. Hoefler, T. Schneider, and A. Lumsdaine. LogGOPSim: simulating large-scale
applications in the LogGOPS model. In HPDC, 2010.

[38] A. J. Hoffman and R. R. Singleton. On Moore graphs with diameters 2 and 3. In
Selected Papers Of Alan J Hoffman: With Commentary. 2003.

[39] C. Hopps. RFC 2992: Analysis of an Equal-Cost Multi-Path Algorithm, 2000.
[40] T. Issariyakul and E. Hossain. Introduction to Network Simulator 2 (NS2). 2012.
[41] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale. Evaluating hpc networks

via simulation of parallel workloads. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, page 14. IEEE
Press, 2016.

[42] N. Jiang, G. Michelogiannakis, D. Becker, B. Towles, and W. Dally. Booksim
interconnection network simulator. 2016.

[43] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla. Beyond fat-trees
without antennae, mirrors, and disco-balls. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017, pages 281–294, 2017.

[44] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for
high-radix networks. In SIGARCH CAN, 2007.

[45] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven, Highly-Scalable
Dragonfly Topology. In ISCA, 2008.

[46] G. Kwasniewski, M. Kabić, M. Besta, J. VandeVondele, R. Solcà, and T. Hoefler.
Red-blue pebbling revisited: near optimal parallel matrix-matrix multiplication.
In ACM/IEEE Supercomputing, page 24. ACM, 2019.

[47] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,M. N. Ganmukhi,
J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C. Wong-
Chan, S. Yang, and R. Zak. The Network Architecture of the ConnectionMachine
CM-5. JPDC, 1996.

[48] X. Liao, L. Xiao, C. Yang, and Y. Lu. MilkyWay-2 supercomputer: system and
application. Frontiers of Computer Science, 2014.

[49] M. Mubarak, C. D. Carothers, R. B. Ross, and P. H. Carns. Modeling a Million-
Node Dragonfly Network Using Massively Parallel Discrete-Event Simulation.
In SC Companion, 2012.

6

[50] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
ishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-tolerant layer
2 data center network fabric. ACM SIGCOMM Computer Communication Review,
39(4):39–50, 2009.

[51] J. Pelkey and G. Riley. Distributed simulation with MPI in ns-3. In SIMUtools,
2011.

[52] C. Raiciu, C. Pluntke, S. Barre, A. Greenhalgh, D. Wischik, and M. Handley. Data
center networking with multipath TCP. In HotNets, 2010.

[53] K. Ramakrishnan, S. Floyd, and D. Black. RFC 3168, The addition of Explicit
Congestion Notification (ECN) to IP. 2001.

[54] A. F. Rodrigues, G. R. Voskuilen, S. D. Hammond, and K. S. Hemmert. Structural
Simulation Toolkit (SST). Technical report, 2016.

[55] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref, M. Arenas,
M. Besta, P. A. Boncz, et al. The future is big graphs! a community view on graph
processing systems. arXiv preprint arXiv:2012.06171, 2020.

[56] P. Schmid, M. Besta, and T. Hoefler. High-performance distributed RMA locks.
In ACM HPDC, pages 19–30. ACM, 2016.

[57] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish: Networking data
centers randomly. NSDI, 2012.

[58] E. Solomonik, M. Besta, F. Vella, and T. Hoefler. Scaling betweenness centrality
using communication-efficient sparse matrix multiplication. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 47. ACM, 2017.

[59] A. Valadarsky, M. Dinitz, and M. Schapira. Xpander: Unveiling the Secrets of
High-Performance Datacenters. In HotNets, 2015.

[60] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let It Flow: Resilient
Asymmetric Load Balancing with Flowlet Switching. In NSDI, 2017.

[61] A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment.
In SIMUtools, 2008.

[62] A. Varga and R. Hornig. INET Framework for OMNeT++. Technical report, 2012.
[63] N. Wolfe, C. D. Carothers, M. Mubarak, R. B. Ross, and P. H. Carns. Modeling

a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation. In
SIGSIM-PADS, 2016.

[64] G. Zheng, G. Kakulapati, and L. V. Kalé. Bigsim: A parallel simulator for perfor-
mance prediction of extremely large parallel machines. In Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, page 78. IEEE, 2004.

7

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Networks
	2.2 Simulations
	2.3 Simulators

	3 Feasibility Analysis
	3.1 Number of Simulation Elements
	3.2 Memory and Time Requirements
	3.3 Discussion and Takeaway

	4 Large-Scale Simulations
	4.1 Simulation Setup
	4.2 Scalability of Simulators
	4.3 Performance Analysis
	4.4 Discussion and Takeaway

	5 Conclusion
	References

