Non-Blocking Collectives for MPI

— overlap at the highest level —

Torsten Hofler

Open Systems Lab
Indiana University
Bloomington, IN, USA

Institut fir Wissenschaftliches Rechnen
Technische Universitat Dresden

Dresden, Germany

27th May 2008

Outline

0 Computer Architecture Past & Future
© Why Non blocking Collectives?

© LibNBC

@ And Applications?

e Ongoing Efforts

Computer Architecture Past & Future

Outline

0 Computer Architecture Past & Future

Computer Architecture Past & Future

Fundamental Assumptions (I)

We need more powerful machines!

@ Solutions for real-world scientific problems need huge
processing power (more than available)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore’s law is still valid (number of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits

Computer Architecture Past & Future

Fundamental Assumptions (II)

Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PEs)

Communication latency is limited

@ It’'s widely accepted that the speed of light limits
data-transmission

@ Example: minimal 0-byte latency for 1m ~ 3.3ns ~ 13
cycles on a 4GHz PE

4

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)

Computer Architecture Past & Future

Assumptions about Parallel Program Optimization

Collective Operations

@ Collective Operations (COs) are an optimization tool
@ CO performance influences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance

Computer Architecture Past & Future

The LogGP Model

level
Sender Receiver
Og oy
CPU — —e
]]
1 1
]]
1 1
1 1
] L]
Network » 4.
LAY LAY
’r ‘l Ay
Ay \}
g+ m'G g+mG

Computer Architecture Past & Future

Interconnect Trends

Technology Change

@ modern interconnects offload communication to
co-processors (Quadrics, InfiniBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even legacy Ethernet supports protocol offload
@ L+g+m-G>>o0

= we prove our expectations with benchmarks of the user CPU
overhead

Computer Architecture Past & Future

LogGP Model Examples - TCP

Time in microseconds

600

500

400

300

200

100

; T
L MPICH2 - G*S+g)
MPICH2 - o
Yadin G*S+g i x*x%
. TCPo ©o -
o
X
x**(
%X
* **X*
%***X*
x*%**
x***

ok
w{ [} =zl
sz
**X*K DDDDDDDDD[DDDDI:IDDDD B
** DDDDDDDDDDDD[
_*E(\ﬁDDDD]DDDDDD

0

10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Computer Architecture Past & Future

LogGP Model Examples - Myrinet/GM

350) ‘ ‘
Open MPI - G*s+g + |
300 ~ Open MPI -0
Myrinet/GM - G*s+g ~
%) Myrinet/GM-o »©
'O ++ +¥
S 250 o R
[&] +F +*++
(0] +* Lt
g 200 et
5
E Lt s kN
= 150 i W*x****
(0] P **x***@(
£ 100 Py
= * w%*%***
o x%***;‘*
50 ++ *%x*’(***
++x%x**x -

0 10000 20000 30000 40000 50000 60000
Datasize in bytes (s)

Computer Architecture Past & Future

LogGP Model Examples - InfiniBand/Openl|B

Time in microseconds

90 ‘ ; .
Open MPI - G*s+g
80 | Open MPI - 0 ok
OpeniB - G*s+g =
70 + OpenlB-o =
60 +++ L% + 1] «
50 +++ +++ . " %
40 et
30 FRITT
20 T
10 ooyt ®
O é 00 0gOoO0o0o0doooodnndoDooDoonoooDodnoo
0 10000 20000 30000 40000 50000 60000

Datasize in bytes (s)

Why Non blocking Collectives?

Outline

© Why Non blocking Collectives?

Why Non blocking Collectives?

Isend/Irecv is there - Why Collectives?

@ Gorlach, '04: “Send-Receive Considered Harmful”
@ & Dijkstra, '68: “Go To Statement Considered Harmful”

point to point

if (rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops

Why Non blocking Collectives?

Sparse Collectives

But my algorithm only needs nearest neighbor communication!?
= this is a collective too, just sparse (cf. sparse BLAS)

sparse communication with neighbors on process
topologies
graph topology makes it generic

many optimization possibilities (process placing, overlap,
message scheduling/forwarding)

easy to implement

not part of MPI but fully implemented in LibNBC and
proposed to the MPI Forum

Why Non blocking Collectives?

Why non blocking Collectives

@ scale typically with O(log>P) sends
@ wasted CPU time: logoP - (L + Ggy)

Fast Ethernet: L = 50-60

Gigabit Ethernet: L = 15-20

InfiniBand: L = 2-7

148 ~ 6000 FLOP on a 3GHz Machine

@ ... and many collectives synchronize unneccessarily

¢ © ¢ ¢

Why Non blocking Collectives?

Modelling the Benefits

LogGP Model for Allreduce:
tared =2 - (20+ L+ m- G) - [logoP] + m -~ - [logoP

Time (us)

1000

100

10

0.1

0.01

CPU overhead (1kiB) ——

Network time (1kiB)

15us non-blocking overhead -

10

100

1000 10000

Why Non blocking Collectives?

CPU Overhead Benchmarks

Allreduce, LAM/MPI 7.1.2/TCP over GigE

CPU Usage (share)

0.03
0.025
0.02
0.015
0.01
0.005

Why Non blocking Collectives?

Performance Benefits

overlap

@ leverage hardware parallelism (e.g. InfiniBand™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the influence of OS noise

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Why Non blocking Collectives?

Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”

Why Non blocking Collectives?

MPI1_Bcast with PO delayed - Jumpshot

»
9]
172
%)
Q
Q
o
=
o

Why Non blocking Collectives?

MPI_Ibcast with PO delayed + overlap - Jumpshot

»
9]
172
%)
Q
Q
o
=
o

LibNBC

Outline

© LibNBC

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_TIbcast (buf, count, MPI_INT, 0, comm, &req);
MPI_Wait (&req) ;

LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

Interface

MPI_TIbcast (buf, count, MPI_INT,

0, comm, &req);
MPI_Wait (&req) ;

Proposal

| A\

Hoefler et. al. (2006): "Non-Blocking Collective Operations for
MPI-2”

LibNBC

Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

send to 1 recv from 3 | end | send to 2 recv from 2 | end ‘

LibNBC download: http://www.unixer.de/NBC

LibNBC

Overhead Benchmarks - Gather with
InfiniBand/MVAPICH on 64 nodes

30000

MP|_Gather ——
NBC_'gather ----- Remmnn
25000

20000 /

15000 2
10000 /
5000 /’//// ------ g

Runtime (s)

VN

0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

Overhead Benchmarks - Scatter with
InfiniBand/MVAPICH on 64 nodes

30000

MP I_Scatfer
NBC_Iscatter ----- Xensne
25000 A

20000 /

15000

Runtime (s)

10000

5000

IR

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

Overhead Benchmarks - Alltoall with
InfiniBand/MVAPICH on 64 nodes

50000 ‘ ‘ ‘
MPI_Allfoall %
45000 | NBC lalltoall - 7 d

40000 ~
35000 /
30000 ////

25000 i
20000
15000 [l

10000
5000

Runtime (s)

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

LibNBC

Overhead Benchmarks - Allreduce with
InfiniBand/MVAPICH on 64 nodes

60000

50000

40000 /
30000 [\/
20000

10000 I

Runtime (s)

B cor e R | s
H=empe””

0
0 50000 100000 150000 200000 250000 300000
Datasize (bytes)

And Applications?

Outline

@ And Applications?

And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - 3D Poisson Solver

@ iterative linear solvers are used in many scientific kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped

And Applications?

Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv or sparse
collectives

PO P1 P2 P3

SIS \\\\\\\i\\s e

P4 PS5 P6

T

—
S
N P7
—
—
—
—

/;

SO

=
3

P8 P9 P10 P11

[0 Process—local data £} 2D Domain

Halo—data

And Applications?

Parallel Speedup (Best Case)

100 | Eth blocking - 100 | IB blocking —+— ,
Eth non-blocking o IB non-blocking -3¢
80 e 80 e -
S - g e
8 60 e e ¥ 8 60
I L e ol _
n 40 “_._.“ 2 40
QEE """" - "
20 1 g 20 [
"Fnl) (x‘“/
0

0
8 16 24 32 40 48 56 64 72 80 88 96

8 16 24 32 40 48 56 64 72 80 88 96
Number of CPUs

Number of CPUs

@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand™
@ System size 800x800x800 (1 node ~ 5300s)

And Applications?

Parallel Data Compression

Second Example
Data Parallel Loops - Parallel Compression

Automatic transformations (C++ templates)
typical loop structure:

for (i=0; 1 < N/P; i++) {
compute (1) ;

}

comm (N/P) ;

And Applications?

Parallel Compression Communication Overhead

0.5

MPI/BL mmmm

MPI/NBC JE]
= OF/NBC s
2 04 _— _—
©
o -
()
_E ,,,,,
2 03 i
o)
[
9 |
8 o2p | b -
S 1
S ‘
E] 1 |
5 o1l | - B -
s TR

0 I
32

And Applications?

Parallel 3d Fast Fourier Transform

—

Third Example
Specialized Algorithms - A parallel 3d-FFT with overlap

Specialized design to achieve the highest overlap. Less
cache-friendly!

And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

\

And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as first xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...

@ collect multiple xz-planes (tile factor)

And Applications?

Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)

And Applications?

Transformation in z Direction

Transform first xz plane in z direction

pattern means that data was transformed in y and z direction

And Applications?

Transformation z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background

And Applications?

Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

data of two planes is not accessible due to communication

And Applications?

Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...

And Applications?

c
9
-—
(®)
()
=
()
X
=
C
0
—
©
£
—
(®)
y—
(9}
C
o
T

. so MPI_Wait for the first MPI_lalltoall!

,..:.;E
b OO

and transform first plane (new pattern means xyz transformed)

o
»
c

Re]

©

Qo

=
[y

<<
el
<
<<

ion

t

irec

D

ion in X

Transformat

Wait and transform second xz plane

o
R
b
(X

kil
\
...“

.q..o. momomomomq,.‘mq‘q
AAAARKARA

b

AR

AR

SEREEERERS

first plane’s data could be accessed for next operation

o
»
c

Re]

©

Qo

=
[y

<<
el
<
<<

ion

t

irec

D

ion in X

Transformat

OGO
RORORON

o
S
G
g

kil
\
...“

.q..o. momomomomq,.‘mq‘q
AAAARKARA

S
(X

b

AR

AR

SEREEERERS

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication

And Applications?

10243 3d-FFT over InfiniBand

MPI/BL ===

FFT Time (s)

1

0 1 ppn 2 ppn

@ P=128, “Coyote’@LANL - 128/64 dual socket 2.6GHz Opteron node:

And Applications?

102423 3d-FFT on the XT4

MPI/BL
18 NBC/NB
16
14
C 42
£
= 10
O 8
L
6
4 b
2
0 32 procs 64 procs 128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

10243 3d-FFT on the XT4 (Communication Overhead)

MPI/BL s
4 NBC/NB
@
- 35
o
2 3
[
>
o 25
S
2 5
Q
S 15 o
E
5 1
(&)
0.5
0 32 procs 64 procs 128 procs

@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron

And Applications?

640° 3d-FFT InfiniBand (Communication Overhead)

0.7 MPI/BL mmmm |
' MPI/NBC =
@ — OF/NBC
£ 06 —
o |
£ N
c |
.2 m
8 04
=} o
Q |
= 02 o b B
i b | | b
w o b 1
0.1 J I I o o 3 I
0oL ' B B
64 32 16 8 4 >

@ “Odin"@IU - dual socket dual core 2.0GHz Opteron InfiniBand

Ongoing Efforts

Outline

e Ongoing Efforts

Ongoing Efforts

Ongoing Work

LibNBC

@ analysis of multi-threaded implementation
@ optimized collectives

Collective Communication

@ optimized collectives for InfiniBand™ (topology-aware)
@ using special hardware support

\

Applications

@ work on more applications
@ = interested in collaborations (ask me!)

Discussion

THE END

Questions?

Thank you for your attention!

Ongoing Efforts

	Computer Architecture Past & Future
	Why Non blocking Collectives?
	LibNBC
	And Applications?
	Ongoing Efforts

