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Computer Architecture Past & Future

Fundamental Assumptions (I)

We need more powerful machines!

@ Solutions for real-world scientific problems need huge
processing power (more than available)

Capabilities of single PEs have fundamental limits

@ The scaling/frequency race is currently stagnating
@ Moore’s law is still valid (number of transistors/chip)

@ Instruction level parallelism is limited (pipelining, VLIW,
multi-scalar)

Explicit parallelism seems to be the only solution

@ Single chips and transistors get cheaper

@ Implicit transistor use (ILP, branch prediction) have their
limits
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Fundamental Assumptions (II)

Parallelism requires communication

@ Local or even global data-dependencies exist
@ Off-chip communication becomes necessary
@ Bridges a physical distance (many PEs)

Communication latency is limited

@ It’'s widely accepted that the speed of light limits
data-transmission

@ Example: minimal 0-byte latency for 1m ~ 3.3ns ~ 13
cycles on a 4GHz PE

4

Bandwidth can hide latency only partially

@ Bandwidth is limited (physical constraints)
@ The problem of “scaling out” (especially iterative solvers)
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Assumptions about Parallel Program Optimization

Collective Operations

@ Collective Operations (COs) are an optimization tool
@ CO performance influences application performance
@ optimized implementation and analysis of CO is non-trivial

Hardware Parallelism

@ More PEs handle more tasks in parallel
@ Transistors/PEs take over communication processing
@ Communication and computation could run simultaneously

Overlap of Communication and Computation

@ Overlap can hide latency
@ Improves application performance
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The LogGP Model
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Interconnect Trends

Technology Change

@ modern interconnects offload communication to
co-processors (Quadrics, InfiniBand, Myrinet)

@ TCP/IP is optimized for lower host-overhead (e.g., Gamma)
@ even legacy Ethernet supports protocol offload
@ L+g+m-G>>o0

= we prove our expectations with benchmarks of the user CPU
overhead
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LogGP Model Examples - TCP
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LogGP Model Examples - Myrinet/GM
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LogGP Model Examples - InfiniBand/Openl|B
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Why Non blocking Collectives?

Isend/Irecv is there - Why Collectives?

@ Gorlach, '04: “Send-Receive Considered Harmful”
@ & Dijkstra, '68: “Go To Statement Considered Harmful”

point to point

if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective
call MPI_GATHER(...)

cmp. math libraries vs. loops
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Sparse Collectives

But my algorithm only needs nearest neighbor communication!?
= this is a collective too, just sparse (cf. sparse BLAS)

sparse communication with neighbors on process
topologies
graph topology makes it generic

many optimization possibilities (process placing, overlap,
message scheduling/forwarding)

easy to implement

not part of MPI but fully implemented in LibNBC and
proposed to the MPI Forum



Why Non blocking Collectives?

Why non blocking Collectives

@ scale typically with O(log>P) sends
@ wasted CPU time: logoP - (L + Ggy)

Fast Ethernet: L = 50-60

Gigabit Ethernet: L = 15-20

InfiniBand: L = 2-7

148 ~ 6000 FLOP on a 3GHz Machine

@ ... and many collectives synchronize unneccessarily

¢ © ¢ ¢
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Modelling the Benefits

LogGP Model for Allreduce:
tared =2 - (20+ L+ m- G) - [logoP] + m -~ - [logoP
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CPU Overhead Benchmarks

Allreduce, LAM/MPI 7.1.2/TCP over GigE

CPU Usage (share)
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Performance Benefits

overlap

@ leverage hardware parallelism (e.g. InfiniBand™)
@ overlap similar to non-blocking point-to-point

pseudo synchronization

@ avoidance of explicit pseudo synchronization
@ limit the influence of OS noise
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last
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Process Skew

@ caused by OS interference or unbalanced application
@ worse if processors are overloaded

@ multiplies on big systems

@ can cause dramatic performance decrease

@ all nodes wait for the last

Petrini et. al. (2003) "The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance on the 8,192
Processors of ASCI Q”
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MPI1_Bcast with PO delayed - Jumpshot
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MPI_Ibcast with PO delayed + overlap - Jumpshot
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LibNBC

Non-Blocking Collectives - Interface

@ extension to MPI-2
@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

MPI_TIbcast (buf, count, MPI_INT, 0, comm, &req);
MPI_Wait (&req) ;
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Non-Blocking Collectives - Interface

@ extension to MPI-2

@ "mixture” between non-blocking ptp and collectives
@ uses MPI_Requests and MPI_Test/MPI_Wait

Interface

MPI_TIbcast (buf, count, MPI_INT,

0, comm, &req);
MPI_Wait (&req) ;

Proposal

| A\

Hoefler et. al. (2006): "Non-Blocking Collective Operations for
MPI-2”
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Non-Blocking Collectives - Implementation

@ implementation available with LibNBC

@ written in ANSI-C and uses only MPI-1

@ central element: collective schedule

@ a coll-algorithm can be represented as a schedule
@ trivial addition of new algorithms

Example: dissemination barrier, 4 nodes, node 0:

send to 1 recv from 3 | end | send to 2 recv from 2 | end ‘

LibNBC download: http://www.unixer.de/NBC
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Overhead Benchmarks - Gather with
InfiniBand/MVAPICH on 64 nodes
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Overhead Benchmarks - Scatter with
InfiniBand/MVAPICH on 64 nodes
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Overhead Benchmarks - Alltoall with
InfiniBand/MVAPICH on 64 nodes
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Overhead Benchmarks - Allreduce with
InfiniBand/MVAPICH on 64 nodes
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And Applications?

Linear Solvers - Domain Decomposition

First Example
Naturally Independent Computation - 3D Poisson Solver

@ iterative linear solvers are used in many scientific kernels
@ often used operation is vector-matrix-multiply

@ matrix is domain-decomposed (e.g., 3D)

@ only outer (border) elements need to be communicated
@ can be overlapped
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Domain Decomposition

@ nearest neighbor communication
@ can be implemented with MPI_Alltoallv or sparse
collectives
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Parallel Speedup (Best Case)
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@ Cluster: 128 2 GHz Opteron 246 nodes
@ Interconnect: Gigabit Ethernet, InfiniBand™
@ System size 800x800x800 (1 node ~ 5300s)



And Applications?

Parallel Data Compression

Second Example
Data Parallel Loops - Parallel Compression

Automatic transformations (C++ templates)
typical loop structure:

for (i=0; 1 < N/P; i++) {
compute (1) ;

}

comm (N/P) ;




And Applications?

Parallel Compression Communication Overhead
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And Applications?

Parallel 3d Fast Fourier Transform

—

Third Example
Specialized Algorithms - A parallel 3d-FFT with overlap

Specialized design to achieve the highest overlap. Less
cache-friendly!
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Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical
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Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

\




And Applications?

Non-blocking Collectives - 3D-FFT

Derivation from “normal” implementation
@ distribution identical to “normal” 3D-FFT
@ first FFT in z direction and index-swap identical

4

Design Goals to Minimize Communication Overhead

@ start communication as early as possible
@ achieve maximum overlap time

@ start MPI_lalltoall as soon as first xz-plane is ready
@ calculate next xz-plane

@ start next communication accordingly ...

@ collect multiple xz-planes (tile factor)
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Transformation in z Direction

Data already transformed in y direction

y X
1 block = 1 double value (3x3x3 grid)



And Applications?

Transformation in z Direction

Transform first xz plane in z direction

pattern means that data was transformed in y and z direction
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Transformation z Direction

start MPI_lalltoall of first xz plane and transform second plane

cyan color means that data is communicated in the background
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Transformation in z Direction

start MPI_lalltoall of second xz plane and transform third plane

data of two planes is not accessible due to communication
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Transformation in x Direction

start communication of the third plane and ...

y X
we need the first xz plane to go on ...



And Applications?

c
9
-—
(®)
()
=
()
X
=
C
0
—
©
£
—
(®)
y—
(9}
C
o
T

. so MPI_Wait for the first MPI_lalltoall!

,..:.;E
b OO

and transform first plane (new pattern means xyz transformed)



o
»
c

Re]

©

Qo

=
[y

<<
el
<
<<

ion

t

irec

D

ion in X

Transformat

Wait and transform second xz plane

o
R
b
(X

kil
\
...“

.q..o. momomomomq,.‘mq‘q
AAAARKARA

b

AR

AR

SEREEERERS

first plane’s data could be accessed for next operation



o
»
c

Re]

©

Qo

=
[y

<<
el
<
<<

ion

t

irec

D

ion in X

Transformat

OGO
RORORON

o
S
G
g

kil
\
...“

.q..o. momomomomq,.‘mq‘q
AAAARKARA

S
(X

b

AR

AR

SEREEERERS

wait and transform last xz plane

done! — 1 complete 1D-FFT overlaps a communication
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10243 3d-FFT over InfiniBand

MPI/BL ===

FFT Time (s)

1

0 1 ppn 2 ppn

@ P=128, “Coyote’@LANL - 128/64 dual socket 2.6GHz Opteron node:
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102423 3d-FFT on the XT4
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@ “Jaguar’@ORNL - Cray XT4, dual socket dual core 2.6GHz Opteron
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10243 3d-FFT on the XT4 (Communication Overhead)
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640° 3d-FFT InfiniBand (Communication Overhead)
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Ongoing Efforts

Ongoing Work

LibNBC

@ analysis of multi-threaded implementation
@ optimized collectives

Collective Communication

@ optimized collectives for InfiniBand™ (topology-aware)
@ using special hardware support

\

Applications

@ work on more applications
@ = interested in collaborations (ask me!)




Discussion

THE END

Questions?

Thank you for your attention!

Ongoing Efforts
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