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ABSTRACT
We propose GraphMineSuite (GMS): the first benchmarking suite

for graph mining that facilitates evaluating and constructing high-

performance graph mining algorithms. First, GMS comes with a

benchmark specification based on extensive literature review, pre-

scribing representative problems, algorithms, and datasets. Second,

GMS offers a carefully designed software platform for seamless

testing of different fine-grained elements of graph mining algo-

rithms, such as graph representations or algorithm subroutines.

The platform includes parallel implementations of more than 40

considered baselines, and it facilitates developing complex and fast

mining algorithms. High modularity is possible by harnessing set

algebra operations such as set intersection and difference, which

enables breaking complex graph mining algorithms into simple

building blocks that can be separately experimented with. GMS

is supported with a broad concurrency analysis for portability in

performance insights, and a novel performance metric to assess the

throughput of graph mining algorithms, enabling more insightful

evaluation. As use cases, we harness GMS to rapidly redesign and

accelerate state-of-the-art baselines of core graph mining problems:

degeneracy reordering (by up to >2×), maximal clique listing (by up

to >9×), 𝑘-clique listing (by 1.1×), and subgraph isomorphism (by

up to 2.5×), also obtaining better theoretical performance bounds.

Website: http://spcl.inf.ethz.ch/Research/Parallel_Programming/GMS

1 INTRODUCTION AND MOTIVATION
Graph mining is used in many compute-related domains, such as

social sciences (e.g., studying human interactions), bioinformatics

(e.g., analyzing protein structures), chemistry (e.g., designing chem-

ical compounds), medicine (e.g., drug discovery), cybersecurity (e.g.,

identifying intruder machines), healthcare (e.g., exposing groups

of people who submit fraudulent claims), web graph analysis (e.g.,

providing accurate search services), entertainment services (e.g.,

predictingmovie popularity), andmany others [63, 73, 113, 120]. Yet,

graphs can reach one trillion edges (the Facebook graph (2015) [71])

or even 12 trillion edges (the Sogou webgraph (2018) [143]), requir-

ing unprecedented amounts of compute power to solve even simple

graph problems such as BFS [143]. For example, running PageRank

on the Sogou webgraph using 38,656 compute nodes (10,050,560

cores) on the Sunway TaihuLight supercomputer [96] (nearly the

full scale of TaihuLight) takes 8 minutes [143]. Harder problems,

such as mining cliques, face even larger challenges.

At the same time, massive parallelism has become prevalent in

modern compute devices, from smartphones to high-end servers [18],

bringing a promise of high-performance parallel graph mining al-

gorithms. Yet, several issues hinder achieving this. First, a large

number of graph mining algorithms and their variants make it

hard to identify the most relevant baselines as either promising

candidates for further improvement, or as appropriate comparison

targets. Similarly, a plethora of available networks hinder selecting

relevant input datasets for evaluation. Second, even when experi-

menting with a single specific algorithm, one often faces numerous

design choices, for example which graph representation to use,

whether to apply graph compression, how to represent auxiliary

data structures, etc.. Such choices may significantly impact perfor-

mance, often in a non-obvious way, and they may require a large

coding effort when trying different options [78]. This is further

aggravated by the fact that developing efficient parallel algorithms

is usually challenging [14] because one must tackle issues such as

deadlocks, data conflicts, and many others [14].

To address these issues, we introduce GraphMineSuite (GMS),
a benchmarking suite for high-performance graphmining algorithms.
GMS provides an exhaustive benchmark specification S . Moreover,

GMS offers a novel performance metric M and a broad theoretical

concurrency analysis C for deeper performance insights beyond

simple empirical run-times. To maximize GMS’ usability, we arm
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BK with the GMS code, OpenMP BK by Das et al. (a recent baseline)

GMS-DEG   : BK with simple degree reorderingGMS-DGR   : BK with degeneracy reordering (a variant by Eppstein et al.)
GMS-ADG      : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S  : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)
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An example GMS use case: accelerating the Bron-Kerbosch algorithm for maximal clique listing

Selecting relevant baselines & input graphs (enabled by the GMS benchmark specification).
Baselines: Das et al., Eppstein et al., Input: graphs with various skews in triangle counts per vertex.

Experimenting with different algorithmic parts (facilitated by the GMS benchmarking platform),
such as graph representations, vertex reorderings, loop scheduling, and other optimizations. The
key optimizations in the BK algorithm enhanced in GMS are approximate degeneracy reordering

of vertices, and an optimization where results of various operations on sets of vertices are cached.
Benchmarking is further simplified by providing reference implementations of graph mining algorithms.

Insightful evaluation (facilitated by the GMS metrics, such as algorithmic throughput). The variants
of BK provided in GMS are able to mine up to 9x more cliques per second than the competition.

Delivering theoretical performance bounds (facilitated by the GMS concurrency analysis). The BK
in GMS offers the best work bound among poly-logarithmic depth maximal clique listing algorithms
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Figure 1: Performance advantages of the parallel Bron-Kerbosch (BK) algo-
rithm implemented in GMS over a state-of-the-art implementation by Das et al. [79]

and a recent algorithm by Eppstein et al. [91] (GMS-DGR) using a novel performance

metric “algorithmic throughput” that shows a number of maximal cliques found per

second. Details of experimental setup: Section 8.
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Reference /
Infrastructure

Focus on
what problems?

Pattern Matching Learning Opt Vr Remarks
mC? kC? dS? sI? fS? vS? lP? cl? cD?

[B] Cyclone [201] Graph database queries é é é é é é é é é ∗ ∗∗ ∗Only shortest paths. ∗∗Only degree centrality.

[B] GBBS [84] + Ligra [192] More than 10 “low-complexity” algorithms é   é é é é é é ⋆ ∗
∗Support for degeneracy, but no explicit rank derivation.
⋆GBBS offers a large number of optimization problems

[B] GraphBIG [165] Mostly vertex-centric schemes é ∗ é é é é é é é ∗∗  ∗Only 𝑘 = 3. ∗∗Only shortest paths and one coloring scheme.
[B] GAPBS [20] Seven “low-complexity” algorithms é ∗ é é é é é é é ∗∗ é ∗Only 𝑘 = 3. ∗∗Only shortest paths.
[B] LDBC [51] Graph database queries é é é é é é é ∗ é ∗∗ é ∗Only one clustering coefficient. ∗∗Only shortest paths.
[B] WGB [12] Mostly online queries é é é é é é é ∗ é ∗∗ é ∗Only one clustering scheme. ∗∗Only shortest paths.
[B] PBBS [44] General parallel problems é é é é é é é  é  é Only graph optimization problems are considered
[B] Graph500 [162] Graph traversals é é é é é é é é é ∗ é ∗Support for shortest paths only.
[B] HPCS [15] Two “low-complexity” algorithms é é é é é é é ∗ é é é ∗Just one clustering scheme is considered
[B] Han at al. [106] Evaluation of various graph processing systems é é é é é é é é é ∗ é ∗Support for Shortest Paths and Minimum ST
[B] CRONO [6] Focus on futuristic multicores é é é é é é é é  ∗ ∗∗ ∗Only shortest paths. ∗∗Only triangle counting.
[B] GARDENIA [218] Focus on future accelerators é é é é é é é é é ∗ ∗∗ ∗Only shortest paths. ∗∗Triangle counting and vertex coloring.

[F] A framework, e.g., Peregrine [118] or Fractal [86] (more at the end of Section 1) ∗ ∗ ∗ ∗ ∗ é é é é é é
∗No good performance bounds (focus on expressiveness),
not competitive to specific parallel mining algorithms

[B] GMS [This paper] General graph mining            Details in Table 4 and Section 4

Table 1: Related work analysis, part 1: a comparison of GMS to selected existing graph-related benchmarks (“[B]”) and graph mining frameworks (“[F]”), focusing
on supported graph mining problems. We exclude benchmarks only partially related to graph processing, with no focus on mining algorithms (Lonestar [57], Rodinia [65],

Parboil [197], BigDataBench [212], BDGS [158], LinkBench [13], and SeBS [74]). mC: maximal clique listing, kC: 𝑘-clique listing, dS: densest subgraph, sI: subgraph isomorphism,

fS: frequent subgraph mining, vS: vertex similarity, lP: link prediction, cl: clustering, cD: community detection, Opt: optimization, Vr: vertex rankings, : Supported. : Partial

support. é: no support.

it with an accompanying software platform P with reference im-

plementations of algorithms I . We motivate the GMS platform in

Figure 1, which illustrates example performance advantages (even

more than 9×) of the GMS code over a state-of-the-art variant of

the Bron-Kerbosch (BK) algorithm. This shows the key benefit of

the platform: it facilitates developing, redesigning, and enhancing

algorithms considered in the benchmark, and thus it enabled us to

rapidly obtain large speedups over fast existing BK baselines. GMS

aims to propel research into different aspects of high-performance

graph mining algorithms, including design, implementation, analy-

sis, and evaluation.

To construct GMS, we first identify representative graph mining

problems, algorithms, and datasets. We conduct an extensive litera-

ture review [5, 11, 63, 97, 120, 136, 137, 142, 146, 176–178, 200, 213],

and obtain a benchmark specification S that can be used as a ref-

erence point when selecting relevant comparison targets.

Second, GMS comes with a benchmarking platform P : a highly

modular infrastructure for easy experimenting with different de-

sign choices in a given graph mining algorithm. A key idea for

high modularity is exploiting set algebra. Here, we observe that
data structures and subroutines in many mining algorithms are

“set-centric”: they can be expressed with sets and set operations,

and the user can seamlessly use different implementations of the

same specific “set-centric” part. This enables the user to seamlessly

use new graph representations, data layouts, architectural features

such as vectorization, and even use numerous graph compression

schemes. We deliver ready-to-go parallel implementations of the

above-mentioned elements, including parallel reference implemen-
tations I of graph mining algorithms, as well as representations,

data layouts, and compression schemes. Our code is public and
can be reused by anyone willing to use it as a basis for trying new

algorithmic ideas, or simply as comparison baselines.

For more insightful performance analyses, we propose a novel

performance metric M that assesses “algorithmic efficiency”, i.e.,

“how efficiently a given algorithm mines selected graph motifs”.

To ensure performance insights that are portable across differ-

ent machines and independent of various implementation details,

GMS also provides the first extensive concurrency analysis C of a

wide selection of graph mining algorithms. We use work-depth, an
established theoretical framework from parallel computing [42, 45],

to show which algorithms come with more potential for high per-

formance on today’s massively parallel systems. Our analysis en-

ables developers to reduce time spent on implementation: instead of

spending days or weeks to implement an algorithm that would turn

out not scalable, one can use our theoretical insights and guidelines

for deciding against mounting an implementation effort.

To show the potential of GMS, we enhance state-of-the-art al-
gorithms that target some of the most researched graph mining

problems. This includes maximal clique listing [79], 𝑘-clique list-

ing [78], degeneracy reordering (core decomposition) [152], and

subgraph isomorphism [59, 60]. By being able to rapidly experiment

with different design choices, we get speedups of >9×, up to 1.1×,
>2×, and 2.5×, respectively. We also improve theoretical bounds:
for example, for maximal clique listing, we obtain 𝑂 (𝑑𝑚3

(2+𝜀)𝑑/3)
work and𝑂 (log2 𝑛+𝑑 log𝑛) depth (𝑑,𝑚, 𝑛 are the graph degeneracy,
#edges, and #vertices, respectively). This is the best work bound

among poly-logarithmic depth maximal clique listing algorithms,

improving upon recent schemes [79, 91, 92].

To summarize, we provide the specific contributions:

• We propose GMS, the first benchmark for graph mining, with a

specification based on more than 300 associated research papers.

• We deliver a GMS benchmarking platform that facilitates develop-

ing and tuning high-performance graph mining algorithms, with

reference implementation of more than 40 algorithms, and high

modularity obtained with set algebra, enabling experimenting

with different fine- and coarse-grained algorithmic elements.

• We propose a novel performance metric for assessing the algorith-

mic throughput of graph mining algorithms.

• We support GMS with the first extensive concurrency analysis
of graph mining for performance insights that are portable and

independent of various implementation details.

• As an example of using GMS, we enhance state-of-the-art base-
lines for core graph mining problems (degeneracy, maximal clique

listing, 𝑘-clique listing, and subgraph isomorphism), obtaining

respective speedups of >9×, up to 10%, >2×, and 2.5×. We also

enhance their theoretical bounds.
2



Reference /
Infrastructure

Summary of focus
(functionalities)

New Alg Gen. APIs Metrics Storage Compres. Th.

∃ na sp N G S P rt me fg mf af ag bg aa ba ad of fg en re ∃ nb

[B] Cyclone [201] Graph databases é é é é  é é é é é é é é é é é é é é é é é é
[B] GBBS [84] + Ligra [192] General graph processing é é é    é   é é é       é  é 

[B] GraphBIG [165] General graph processing é é é   é é   é  é  é  é é é é é é é é
[B] GAPBS [20] General graph processing é é é é  é é   é é é  é é é é é é é é é é
[B] Graphalytics LDBC [51] Graph databases é é é é  é é ∗ ∗ ∗ ∗ ∗  é  é é é é é é é é
[B] WGB [12] General graph processing é é é é  é é   é é é é é é é é é é é é é é
[B] PBBS [44] General graph processing é é é é é é é  é é é é  é é é é é é é é é é
[B] Graph500 [162] Graph traversals    é  é é  é é é   é é é é é é é é é é
[B] HPCS [15] General graph processing é é é é  é é   é é é  é é é é é é é é 

[B] Han et al. [106] Evaluation of graph processing systems é é é  é é é   é  é   é é é é é é é é é
[B] CRONO [6] Multicore systems é é é é é é é     é é é é é é é é é é é é
[B] GARDENIA [218] Accelerators é é é é  é é   é  é  é  é é é é é é é é

[F] Arabesque [204] Graph pattern matching    é  é é    é é  é  é  é é é é  é
[F] NScale [174] Ego-network analysis    é  é é    é é  é é   é é é é  é
[F] G-Thinker [219] Graph pattern matching  é  é  é     é é  é é é é é é é é é é
[F] G-Miner [66] Graph pattern matching    é  é é   ∗ ∗ é  é  é é é é é é  é
[F] Nuri [124] Graph pattern matching  é  é  é é  ∗ ∗ é é  é  é é é é é é é é
[F] RStream [210] Graph pattern matching  é  é  é é  ∗ ∗ é é  é  é é é é é é é é
[F] ASAP [116] Graph pattern matching    é  é é  ∗ ∗ é é  é é é é é é é é  é
[F] Fractal [86] Graph pattern matching  é  é  é é   ∗ é é  é  é é é é é é é é
[F] Kaleido [224] Graph pattern matching    é  é é   ∗ ∗ é  é é   é é é é  é
[F] AutoMine+GraphZero [153, 154] Graph pattern matching    é  é    é  é  é é é é é é é é  é
[F] Pangolin [67] Graph pattern matching  é  é  é é   ∗ é é  é  é  é é é é é é
[F] PrefixFPM [220] Graph Pattern Mining  é  é  é é  é é é é  é é é é é é é é é é
[F] Peregrine [118] Graph Pattern Mining  é  é  é é     é  é   é é   é é é

[B] GMS [This paper] Graph mining algorithms                      

Table 2: Related work analysis, part 2: a comparison of GMS to graph benchmarks (“[B]”) and graph pattern matching frameworks (“[F]”), focusing on supported

functionalities important for developing fast and simple graph mining algorithms. We exclude benchmarks only partially related to graph processing, with no focus on mining, such

as Lonestar [57], Rodinia [65], Parboil [197], BigDataBench [212], BDGS [158], LinkBench [13], and SeBS [74]. New alg? (∃): Are there any new/enhanced algorithms offered? na:
do the new algorithms have provable performance properties? sp: are there any speedups over tuned existing baselines? Modularity: Is a given infrastructure modular, facilitating

adding new features? The numbers ( 1 – 5 , 5+ ) indicate aspects of modularity, details in Sections 3–4. In general: Gen. APIs: Dedicated generic APIs for a seamless integration

of an arbitrary graph mining algorithm with: N (an arbitrary vertex neighborhood), G (an arbitrary graph representation), S (arbitrary processing stages, such as preprocessing

routines), P (PAPI infrastructure). Metrics: Supported performance metrics. rt: (plain) run-times. me: (plain) memory consumption. fg: support for fine-grained analysis (e.g.,

providing run-time fraction due to preprocessing).mf: metrics for machine efficiency (details in § 4.3). af: metrics for algorithmic efficiency (details in § 4.3). Storage: Supported
graph representations and auxiliary data structures. ag: graph representations based on (sparse) integer arrays (e.g., CSR). bg: graph representations based on (sparse or dense)

bitvectors [1, 107]. aa: auxiliary structures based on (sparse) integer arrays. ba: auxiliary structures based on (sparse or dense) bitvectors. Compression: Supported forms of

compression or space-efficient data structures.ad: compression of adjacency data. of: compression of offsets into the adjacency data. fg: compression of fine-grained elements (e.g.,

single vertex IDs). en: various forms of the encoding of the adjacency data (e.g., Varint [40]). re: support for relabeling adjacency data (e.g., degree minimizing [40]). Th.: Theoretical
analysis. ∃: Any theoretical analysis is provided. Nb: Whether any new bounds (or other new theoretical results) are derived.: Support. : Partial support. ∗

/ ∗
: A given

metric is supported via an external profiler. é: No support.

1.1 GMS vs. Graph-Related Benchmarks
We motivate GMS as the first benchmark for graph mining.
There exist graph processing benchmarks, but they do not fo-

cus on graph mining; we illustrate this in Table 1 (“[B]”). They

focus on graph database workloads (LDBC [51], Cyclone [201],

LinkBench [13]) , extreme-scale graph traversals (Graph500 and

GreenGraph500 [162]) , and different “low-complexity” (i.e., with
run-times being low-degree polynomials in numbers of vertices

or edges) parallel graph algorithms such as PageRank, triangle

counting, and others, researched intensely in the parallel program-

ming community (GAPBS [20], GBBS & Ligra [83], WGB [12],

PBBS [44], HPCS [15], GraphBIG [165], Lonestar [57], Rodinia [65],

Parboil [197], BigDataBench [212], BDGS [158]). Despite some sim-

ilarities (e.g., GBBS provides implementations of 𝑘-clique listing),

none of these benchmarks targets general graphmining, and they do

not offer novel performance metrics or detailed control over graph

representations, data layouts, and others. We broadly analyze this

in Table 2, where we compare GMS to other benchmarks in terms

of the modularity of their software infrastructures, offered met-

rics, control over storage schemes, support for graph compression,

provided theoretical analyses, and whether they improve state-of-

the-art algorithms. Finally, GMS is the only benchmark that is used

to directly enhance core state-of-the-art graph mining algorithms,

achieving both better bounds and speedups in empirical evaluation.

Unlike other benchmarks, GMS proposes to exploit set alge-
bra as a driving enabler for modularity, simplicity, but also high-
performance. This design decision comes from our key observation

that established formulations of many relevant graph mining prob-

lems and algorithms heavily rely on set algebra.

1.2 GMS vs. Pattern Matching Frameworks
Many graph mining frameworks have recently been proposed, for

example Peregrine [118] and others [66, 67, 86, 116, 124, 153, 154,

204, 219, 220, 224]. GMS does not compete with such frameworks.

First, as Table 1 shows, such frameworks do not target broad graph

mining. Second, key offered functionalities also differ, see Table 2 .

These frameworks focus on programming models and abstractions,
and on the underlying runtime systems1 . Contrarily, GMS focuses

on benchmarking and tuning specific parallel algorithms, with prov-

able performance properties, to accelerate the most competitive

existing baselines.

1
We do not include these aspects in Table 2 due to space constraints – these aspects

are not in the focus of GMS and any associated columns would have “é” for GMS

3



2 NOTATION AND BASIC CONCEPTS
We first present the most basic used concepts. However, GMS

touches many different areas, and – for clarity – we will present any
other background information later, when required. Table 3 lists the
most important symbols used in this work.

𝐺 = (𝑉 , 𝐸) An graph𝐺 ;𝑉 , 𝐸 are sets of vertices and edges.
𝑛,𝑚 Numbers of vertices and edges in𝐺 ; |𝑉 | = 𝑛, |𝐸 | =𝑚.
Δ(𝑣), 𝑁 (𝑣) The degree and neighbors of 𝑣 ∈ 𝑉 .
Δ, 𝑑 The maximum and the average degree in𝐺 (𝑑 =𝑚/𝑛).

Table 3: The most important symbols used in the paper.

2.1 Graph Model
We model an undirected graph 𝐺 as a tuple (𝑉 , 𝐸); 𝑉 is a set of

vertices and 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges; |𝑉 | = 𝑛 and |𝐸 | =𝑚. The

maximum degree of a graph is Δ. The neighbors and the degree of

a given vertex 𝑣 are denoted with 𝑁 (𝑣) and Δ(𝑣), respectively. The
vertices are identified by integer IDs: 𝑉 = {1, . . . , 𝑛}.

2.2 Set Algebra Concepts
GMS uses basic set operations:𝐴∩𝐵,𝐴∪𝐵,𝐴 \𝐵, |𝐴|, and ∈ 𝐴. Any
set operation can be implemented with various set algorithms. Sets
usually contain vertices and at times edges. A set can be represented
differently, for example with a bitvector or an integer array.

2.3 Graph Representation
By default, we use a standard sorted Compressed Sparse Row (CSR)
graph representation. For an unweighted graph, CSR consists of a

contiguous array with IDs of neighbors of each vertex (2𝑚 words)

and offsets to the neighbor data of each vertex (𝑛 words). We also

use more complex representations such as compressed bitvectors.

3 OVERVIEW OF GMS
We start with an overview; see Figure 2.

The GMS benchmark specification S (details in Section 4)

motivates representative graph mining problems and state-of-the-

art algorithms solving these problems, relevant datasets, perfor-

mance metrics M , and a taxonomy that structures this information.

The specification, in its entirety or in a selected subpart, enables

choosing relevant comparison baselines and important datasets

that stress different classes of algorithms.

The specification is implemented in the benchmarking plat-
form P (details in Section 5). The platform facilitates developing

and evaluating high-performance graph mining algorithms. The

former is enabled by incorporating set algebra as the key driver for

modularity and high performance. For the latter, the platform forms

a processing pipeline with well-separated parts (see the bottom of

Figure 2): loading the graph from I/O, constructing a graph repre-

sentation ( 1 – 2 ), optional preprocessing ( 3 ) running selected

graph algorithms ( 4 – 5 , 5+ ), and gathering data.

The reference implementation of algorithms I (details in

Section 6) offers publicly available, fast, and scalable baselines that

effectively use massive parallelism in today’s architectures. We

implement algorithms to make their design modular, i.e., different

building blocks of a given algorithm, such as a preprocessing op-

timization, can be replaced with user-specified codes. As data

movement is dominating runtimes in irregular graph computa-

tions, we also provide a large number of storage schemes: graph
representations, data layout schemes, and graph compression. We

describe selected implementations, focusing on how they achieve

high performance and modularity, in Section 6.

The concurrency analysis C (details in Section 7) offers a

theoretical framework to analyze performance, storage, and the as-

sociated tradeoffs. We use work and depth [42, 45] that respectively

describe the total work done by all executing processors, and the

length of the associated longest execution path.

In the next sections, we detail the respective parts of GMS. We

will also describe in more detail example use cases, in which we

show how using GMS ensures speedups over state-of-the-art base-

lines for 𝑘-clique listing [78] and maximal clique listing [91].

4 BENCHMARK SPECIFICATION
To construct a specification of graph mining algorithms, we exten-

sively reviewed related work [5, 11, 63, 97, 120, 136, 137, 142, 146,

176–178, 200, 213]. The GMS specification has four parts: graph

mining problems, algorithms, datasets, andmetrics2.

4.1 Graph Problems and Algorithms
We identify four major classes of graph mining problems and the

corresponding algorithms: patternmatching, learning, reorder-
ing, and (partially) optimization. For each given class of problems,

we aimed to cover a wide range of problems and algorithms that

differ in their design and performance characteristics, for example

P and NP problems, heuristics and exact schemes, algorithms with

time complexities described by low-degree and high-degree polyno-

mials, etc.. The specification is summarized in Table 4. Additional

details are provided in the appendix, in Section A.

4.1.1 Graph Pattern Matching. One large class is graph pattern

matching [120], which focuses on finding specific subgraphs (also

called motifs or graphlets) that are often (but not always) dense.
Most algorithms solving such problems consist of the searching
part (finding candidate subgraphs) and the matching part (deciding
whether a given candidate subgraph satisfies the search criteria).

The search criteria (the details of the searched subgraphs) influ-

ence the time complexity of both searching and matching. First,

we pick listing all cliques in a graph, as this problem has a long

and rich history in the graph mining domain, and numerous ap-

plications. We consider bothmaximal cliques (an NP-hard prob-

lem) and 𝑘-cliques (a problem with time complexity in 𝑂 (𝑛𝑘 )),
and the established associated algorithms, most importantly Bron-

Kerbosch [56], Chiba-Nishizeki [69], and their various enhance-

ments [61, 78, 91, 151, 207]. Next, we cover a more general prob-

lem of listing dense subgraphs [117, 136] such as 𝑘-cores, 𝑘-star-

cliques, and others. GMS also includes the Frequent Subgraph

Mining (FSM) problem [120], in which one finds all subgraphs
(not just dense) that occur more often than a specified threshold.
Finally, we include the established NP-complete subgraph iso-
morphism (SI) problem, because of its prominence in both the

2
We encourage participation in the GMS effort. If the reader would like to include some problem or

algorithm in the specification and the platform, the authors would welcome the input.
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5
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representation

Example:
reordered CSR

(degree order: by
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of fine algorithm blocks such
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facilitates it with appropriate

modular implementations 
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High-Performance
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  GraphMine

Suite
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Solutions & answers

➜ Parallel, ➜ Modular,
➜ Scalable, ➜ Fast, ➜ ...

Features

Features

➜ Simple to use,
➜ Extensible, 
➜ Modular,
➜ Public.

Key idea for high modularity:
use set algebra. Sets and set
operations become "modules"

that can be implemented in
different ways, and still they

can be seamlessly combined.

Key idea in a novel metric:
count the number of graph 
patterns mined per second

(algorithmic efficiency).

A representation is
modular: the user
can provide a new

representation

Graph
accesses

Figure 2: The overview of GMS and how it facilitates constructing, tuning, and benchmarking graph mining algorithms. The upper red part shows a process of constructing a

graph mining algorithm, and the associated research questions. The middle blue part shows the corresponding different elements of the GMS suite ( S – M ). The bottom blue part

illustrates the details of the GMS design benchmarking, with the stages of the GMS pipeline (execution toolchain) for running a given graph mining algorithm ( 1 – 5 , 5+ ).

theory and practice of pattern matching, and because of a large

number of variants that often have different performance charac-

teristics [59, 75, 108, 155, 209]; SI is also used as a subroutine in the

matching part of FSM.

4.1.2 Graph Learning. We also consider various problems that

can be loosely categorized as graph learning. These problems are

mostly related to clustering, and they include vertex similar-
ity [137, 179, 179] (verifying how similar two vertices are), link
prediction [10, 142, 146, 202, 211] (predicting whether two non-

adjacent vertices can become connected in the future, often based

on vertex similarity scores), andClustering and Community De-
tection [46, 119, 175] (finding various densely connected groups of

vertices, also often incorporating vertex similarity as a subroutine).

4.1.3 Vertex Reordering. We also consider reordering of vertices.

Intuitively, the order in which vertices are processed in some algo-

rithm may impact the performance of this algorithm. For example,

when counting triangles, ordering vertices by degrees (prior to

counting) minimizes the number of times one triangle is (unneces-

sarily) counted more than once. In GMS, we first consider the above-

mentioned degree ordering. We also provide two algorithms for

the degeneracy ordering [94] (exact and approximate), which
was shown to improve the performance of maximal clique listing

or graph coloring [24, 61, 91, 207].

4.1.4 Optimization. While GMS focuses less on optimization prob-

lems, we also include a representative problem of graph coloring

and selected other problems.
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Graph problem Corresponding algorithms E.? P.? Why included, what represents? (selected remarks)

Graph
Pattern
Matching

•Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]  5+  Widely used, NP-complete, example of backtracking

• 𝑘-Clique Listing [78] Edge-Parallel and Vertex-Parallel general algorithms [78],
different variants of Triangle Counting [184, 193]  5+  P (high-degree polynomial), example of backtracking

• Dense Subgraph Discovery [5] Listing 𝑘-clique-stars [117] and 𝑘-cores [94] (exact & approximate)  5+  Different relaxations of clique mining
• Subgraph isomorphism [87] VF2 [75], TurboISO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59]   Induced vs. non-induced, and backtracking vs. indexing schemes
• Frequent Subgraph Mining [5] BFS and DFS exploration strategies, different isomorphism kernels   Useful when one is interested in many different motifs

Graph
Learning

• Vertex similarity [137]
Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential Attachment, Total Neighbors [179]  5+

A building block of many more comples schemes,
different methods have different performance properties

• Link Prediction [202]
Variants based on vertex similarity (see above) [10, 142, 146, 202],
a scheme for assessing link prediction accuracy [211]  5+  A very common problem in social network analysis

• Clustering [183]
Jarvis-Patrick clustering [119] based on different
vertex similarity measures (see above) [10, 142, 146, 202]  5+

A very common problem in general data mining; the selected
scheme is an example of overlapping and single-level clustering

• Community detection Label Propagation and Louvain Method [195]   Examples of convergence-based on non-overlapping clustering

Opti-
mization
problems

•Minimum Graph Coloring [168]
Jones and Plassmann’s (JP) [123], Hasenplaugh et al.’s (HS) [110],
Johansson’s (J) [121], Barenboim’s (B) [17], Elkin et al.’s (E) [90],
sparse-dense decomposition (SD) [109]


NP-complete; uses vertex prioritization (JP, HS),
random palettes (J, B), and adapted distributed schemes (E, SD)

•Minimum Spanning Tree [76] Boruvka [53]   P (low complexity problem)
•Minimum Cut [76] A recent augmentation of Karger–Stein Algorithm [125]   P (superlinear problem)

Vertex
Ordering

• Degree reordering A straightforward integer parallel sort   A simple scheme that was shown to bring speedups
• Triangle count ranking Computing triangle counts per vertex  5+  Ranking vertices based on their clustering coefficient
• Degenerecy reordering Exact and approximate [94] [127]  5+  Often used to accelerate Bron-Kerbosch and others

Table 4: Graph problems and algorithms considered in GMS. “E.? (Extensibility)” indicates how extensible given implementations are in the GMS benchmarking platform: “” indicates full extensibility,

including the possibility to provide new building blocks based on set algebra ( 1 – 5 , 5+ ). “”: an algorithm that does not straightforwardly (or extensively) use set algebra, offering modularity levels 1 – 5 ”

. “P.? (Preprocessing) indicates whether a given algorithm can be seamlessly used as a preprocessing routine; in the current GMS version, this feature is reserved for the vertex reordering
algorithms.

4.1.5 Taxonomy and Discussion. Graph pattern matching, cluster-

ing, and optimization are related in that the problems from these

classes focus on finding certain subgraphs. In the two former classes,

such subgraphs are usually “local” groups of vertices, most often

dense (e.g., cliques, clusters) [2–4, 23, 115, 169, 206], but sometimes

can also be sparse (e.g., in FSM or SI). In optimization, a subgraph

to be found can be “global”, scattered over the whole graph (e.g.,

vertices with the same color). Moreover, clustering and community
detection (central problems in graph learning) are similar to dense
subgraph discovery (a central problem in graph pattern matching).
Yet, the latter use the notion of absolute density: a dense subgraph 𝑆
is some relaxation of a clique (i.e., one does not consider what is

“outside 𝑆”). Contrarily, the former use a concept of relative density:
one compares different subgraphs to decide which one is dense [5].

4.2 Graph Datasets
We aim at a dataset selection that is computationally challenging

for all considered problems and algorithms, cf. Table 4. We list both

large and small graphs, to indicate datasets that can stress both

low-complexity graph mining algorithms (e.g., centrality schemes

or clustering) and high-complexity P, NP-complete, and NP-hard

ones such as subgraph isomorphism.

So far, existing performance analyses on parallel graph algo-

rithms focused on graphs with varying sparsities𝑚/𝑛 (sparse and

dense), skews in degree distribution (high and low skew), diameters
(high and low), and amounts of locality that can be intuitively ex-

plained as the number of inter-cluster edges (many and few) [20].

In GMS, we recommend to use such graphs as well, as the above

properties influence the runtimes of all described algorithms.

In Table 4, graphs with high degree distribution skews are indi-

cated with large (relatively to 𝑛) maximum degrees Δ, which poses

challenges for load balancing and others. Moreover, we list graphs

with very high diameters (e.g., road networks) that stress iterative

algorithms where the runtime depends on the diameter. Next, to

provide even more variability in the performance effects, we also

consider graphs with relatively high diameters and with high skews
in degree distributions, such as the youtube social network.

However, one of the insights that we gained with GMS is that the
higher-order structure, important for the performance of graph
mining, can be little related to the above properties. For example,

in § 8.6, we describe two graphs with almost identical sizes, sparsi-

ties, and diameters, but very different performance characteristics

for 4-clique mining. As we detail in § 8.6, this is because the origin

of these graphs determines whether a graph has many cliques or
dense (but mostly non-clique) clusters. Thus, we also explicitly

recommend to use graphs of different origins. We provide details of

this particular case in § 8.6 (cf. Livemocha and Flickr).

In addition, we explicitly consider the count of triangles𝑇 , as (1)

it indicates clustering properties (and thus implies the amount of

locality), and it gives hints on different higher-order characteristics

(e.g., the more triangles per vertex, the higher a chance for having

𝑘-cliques for 𝑘 > 3). Here, we also recommend using graphs that

have large differences in counts of triangles per vertex (i.e., large 𝑇 -

skew). Specifically, a large difference between the average number

of triangles per vertex 𝑇 /𝑛 and the maximum 𝑇 /𝑛 indicates that a

graph may pose additional load balancing problems for algorithms

that list cliques of possibly unbounded sizes, for example Bron-

Kerbosch. We also consider such graphs, see Table 4.

Finally, GMS enables using synthetic graphswith the randomuni-

form (the Erdős-Rényi model [93]) and power-law (the Kronecker

model [139]) degree distributions. This is enabled by integrating

the GMS platform with existing graph generators [20]. Using such

synthetic graphs enables analyzing performance effects while sys-
tematically changing a specific single graph property such as 𝑛,𝑚,

or𝑚/𝑛, which is not possible with real-world datasets.
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We stress that we refrain from prescribing concrete datasets

as benchmarking input (1) for flexibility, (2) because the datasets

themselves evolve and (3) the compute and memory capacities

of architectures grow continually, making it impractical to stick

to a fixed-sized dataset. Instead, in GMS, we analyze and discuss

publicly available datasets in Section 8, making suggestions on their

applicability for stressing performance of different algorithms.

4.3 Metrics
In GMS, we first use simple running times of algorithms (or their

specific parts, for a fine grained analysis). Unless stated otherwise,

we use all available CPU cores, to maximize utilization of the un-

derlying system. We also consider scalability analyses, illustrating
how the runtime changes with the increasing amount of parallelism

(#threads). Comparison between the measured scaling behavior and

the ideal speedup helps to identify potential scalability bottlenecks.

Finally, we consider memory consumption.
We also assess themachine-efficiency, i.e., how well a machine

is utilized in terms of its memory bandwidth. For this, we consider
CPU core utilization, expressed with counts of stalled CPU cycles.

One can measure this number easily with, for example, the estab-

lished PAPI infrastructure [161] that enables gathering detailed

performance data from hardware counters. As we will discuss in

detail in Section 5, we seamlessly integrate GMS with PAPI, en-

abling gathering detailed data such as stalled CPU cycles but also

more than that, for example cache misses and hits (L1, L2, L3, data

vs. instruction, TLB), memory reads/writes, and many others.

Finally, we propose a newmetric formeasuring the “algorithmic
efficiency” (“algorithmic throughput”). Specifically, we mea-

sure the number of mined graph patterns in a time unit. Intuitively,
this metric indicates how efficient a given algorithm is in finding

respective graph elements. An example such metric used in the past

is processed edges per second (PEPS), used in the context of graph

traversals and PageRank [143]. Here, we extend it to graph mining

and to arbitrary graph patterns. In graph pattern matching, this

metric is the number of the respective graph subgraphs found per
second (e.g., maximal cliques per second). In graph learning, it is

a count of vertex pairs with similarity derived per second (vertex

similarity, link prediction), or the number of clusters/communities

found per second (clustering, community detection). The algorith-

mic efficiency facilitates deriving performance insights associated

with the structure of the processed graphs. By comparing relative

throughput differences between different algorithms for different in-
put graphs, one can conclude whether these differences consistently

depend on pattern (e.g., clique) density.
The algorithmic efficiency metric may also be used to provide

more compact results. As an example, consider two datasets, one

– 𝐺1 – with many small cliques, the other – 𝐺2 – with few large

cliques. Bron Kersbosch may be similar in both cases in its run-

time, but its “clique efficiency” would be high for 𝐺1 and low for

𝐺2. Thus, one could deduce based purely on the “clique throughput”

that the best choice of algorithm depends on the number of cliques

in the graph, because BK’s throughput suffers more when there are

few cliques, but it has a high throughput when there are many of

cliques. This cannot be deduced based purely on the run-time, but

only using a combination of run-times and total clique counts.

4.4 Beyond The Scope of GMS
We fix GMB’s scope to include problems and algorithms related to

“graph mining”, often also referred to as “graph analytics”, in the

offline (static) setting, with a single input graph. Thus, we do not

focus on streaming or dynamic graphs (as they usually come with

vastly different design and implementation challenges [28]) and we

do not consider problems that operate on multiple different input
graphs. We leave these two domains for future work.

GMS also does not aim to cover advanced statistical methods that

– for example – analyze power laws in input graphs. For this, we

recommend to use specialized software, for example iGraph [77].

Finally, we also do not focus on many graph problems and algo-

rithms traditionally researched in the parallel programming com-

munity and usually do not considered as part of graph mining. Ex-
amples are PageRank [167], Breadth-First Search [19], Betweenness

Centrality [54, 148, 173, 194], and others [24, 27, 32, 36, 37, 39, 82,

100]. Many of these problems are addressed by abstractions such as

vertex-centric [150], edge-centric [181], GraphBLAS [126] and the

associated linear algebraic paradigm [126] with fundamental opera-

tions being matrix-matrix and matrix-vector products [35, 132, 133].

These works were addressed in detail in past analyses [26] and are

included in existing suites such as GAPBS [20], Graph500 [162, 198],

and GBBS [83]. Still, all the GMS modularity levels ( 1 – 5+ ) can

be used to extend the GMS platform with any of such algorithms.

5 GMS PLATFORM & SET ALGEBRA
We now detail the GMS platform and how it enables modularity,

extensibility, and high performance. Details of using the platform

are described in an extensive documentation (available at the pro-

vided link). There are six main ways in which one can experiment

with a graph mining algorithm using the GMS platform, indicated

in Figure 2 with 1 – 5+ and a block .

First, the user can provide a new graph representation 1 and the

associated routines for accessing the graph structure 2 . By default,

GMS uses CSR. A seamless integration of a new graph representa-

tion is enabled by a modular design of files and classes with the rep-

resentation code, and a concise interface (checking the degree 𝑑 (𝑣),
loading neighbors 𝑁 (𝑣), iterating over vertices 𝑉 or edges 𝐸, and

verifying if an edge (𝑢, 𝑣) exists) between a representation and the

rest of GMS. The GMS platform also supports compressed graph

representations. While many compression schemes focus on min-

imizing the amount of used storage [48] and require expensive

decompression, some graph compression techniques entailmild de-

compression overheads, and they can even lead to overall speedups
due to lower pressure on the memory subsystem [40]. Here, we

offer ready-to-go implementations of such schemes, including bit

packing, vertex relabeling, Log(Graph) [40], and others.

Second, the user can seamlessly add preprocessing routines 3
such as the reordering of vertices. Here, the main motivation is that

by applying a relevant vertex reordering (relabeling), one can reduce

the amount of work to be done in the actual following graph mining

algorithm. For example, the degeneracy order can significantly

reduce the work done when listing maximal cliques [94]. The user

runs a selected preprocessing scheme with a single function call

that takes as its argument a graph to be processed.
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Third, one can plug in a whole new graph algorithm 4 . thanks

to a simple code structure and easy access to methods for loading a

graph from file, building representations, etc.. GMS also facilitates

modifying fine parts of an algorithm 5 , such as a scheduling policy

of a loop. For this, we ensure a modular structure of the respective
implementations, and annotate code.

Finally, we use the fact that many graph algorithms, for example

Bron-Kerbosch [56] and others [1, 59–61, 78, 79, 91, 91, 107, 207,

211], are formulated with set algebra and use a small group of well-

defined operations such as set intersection∩. In GMS, we enable the

user to provide their own implementation of such operations and

of the data layout of the associated sets. This facilitates controlling

the layout of a single auxiliary data structure or an implementation

of a particular subroutine (indicated with 5+ ). Thus, one is able

to break complex graph mining algorithms into simple building

blocks, and work on these building blocks independently. We al-

ready implemented a wide selection of routines for ∩, ∪, \, | · |, and
∈; we also offer different set layouts based on integer arrays, bit

vectors, and compressed variants of these two.

Set algebra building blocks in GMS are sets, set operations, set

elements, and set algebra based graph representations. The first

three are grouped together in the Set interface. The last one is a
separate class that appropriately combines the instances of a given

Set implementation. We now detail each of these parts.

5.1 Set Interface
The Set interface, illustrated in Listing 1, encapsulates the represen-
tation of an arbitrary set and its elements, and the corresponding

set algorithms. By default, set elements are vertex IDs (modeled

as integers) but other elements (i.e., integer tuples to model edges)

can also be used. Then, there are three types of methods in Set.
First, there are methods implementing set basic set algebra op-

erations, i.e., “union” for ∪, “intersect” for ∩, and “diff” for \. To
enable performance tuning, they come in variants. “_inplace” in-

dicates that the calling object is being modified, as opposed to the

default method variant that returns a new set (avoiding excessive

data copying). “_count” indicates that the result is the size of the

resulting set, e.g., |𝐴∩𝐵 | instead of𝐴∩𝐵 (avoiding creating unnec-

essary structures). Then, add and remove enable devising optimized

variants of ∪ and \ in which only one set element is inserted or

removed from a set; these methods always modify the calling set.

GMS offers other methods for performance tuning. This includes

constructors (e.g., a move constructor, a constructor of a single-

element set, or constructors from an array, a vector, or an initializer

list), and general methods such as clone, which is used because – by
default – the copy constructor is disabled for sets to avoid accidental

data copying. GMS also offers conversion of a set to an integer array

to facilitate using established parallelization techniques.

5.2 Implementations of Sets & Set Algorithms
On one hand, a set 𝐴 can be represented as a contiguous sparse

arraywith integersmodeling vertex IDs (“sparse” indicates that only

non-zero elements are explicitly stored), of size𝑊 · |𝐴|, where𝑊 is

the memory word size [bits]. This representation is commonly used

to store vertex neighborhoods. However, one can also represent

𝐴 with a dense bitvector of size 𝑛 [bits], where the 𝑖-th set bit

1 // Set: a type for arbitrary sets.
2 // SetElement: a type for arbitrary set elements.
3

4 class Set {
5 public:
6 //In methods below , we denote "*this" pointer with 𝐴
7 //(1) Set algebra methods:
8 Set diff(const Set &𝐵) const; // Return a new set 𝐶 = 𝐴 \ 𝐵
9 Set diff(SetElement 𝑏) const; // Return a new set 𝐶 = 𝐴 \ {𝑏 }
10 void diff_inplace(const Set &𝐵); // Update 𝐴 = 𝐴 \ 𝐵
11 void diff_inplace(SetElement 𝑏); // Update 𝐴 = 𝐴 \ {𝑏 }
12 Set intersect(const Set &𝐵) const; // Return a new set 𝐶 = 𝐴 ∩ 𝐵
13 size_t intersect_count(const Set &𝐵) const; // Return |𝐴 ∩ 𝐵 |
14 void intersect_inplace(const Set &𝐵); // Update 𝐴 = 𝐴 ∩ 𝐵
15 Set union(const Set &𝐵) const; // Return a new set 𝐶 = 𝐴 ∪ 𝐵
16 Set union(SetElement 𝑏) const; // Return a new set 𝐶 = 𝐴 ∪ {𝑏 }
17 Set union_count(const Set &𝐵) const; // Return |𝐴 ∪ 𝐵 |
18 void union_inplace(const Set &𝐵); // Update 𝐴 = 𝐴 ∪ 𝐵
19 void union_inplace(SetElement 𝑏); // Update 𝐴 = 𝐴 ∪ {𝑏 }
20 bool contains(SetElement 𝑏) const; // Return 𝑏 ∈ 𝐴 ? true:false
21 void add(SetElement 𝑏); // Update 𝐴 = 𝐴 ∪ {𝑏 }
22 void remove(SetElement 𝑏); // Update 𝐴 = 𝐴 \ {𝑏 }
23 size_t cardinality () const; // Return set's cardinality
24

25 //(2) Constructors (selected):
26 Set(const SetElement *start , size_t count); //From an array
27 Set(std::vector <SetElement > &vec); //From a vector
28 //Set initialization with initializer list of elements:
29 Set(std:: initializer_list <SetElement > &data);
30 Set(); Set(Set &&); // Default and Move constructors
31 Set(SetElement); // Constructor of a single -element set
32 static Set Range(int 𝑏𝑜𝑢𝑛𝑑); // Create set {0, 1, ..., 𝑏𝑜𝑢𝑛𝑑 − 1}
33

34 //(3) Other methods:
35 begin() const; // Return iterators to set's start
36 end() const; // Return iterators to set's end
37 Set clone() const; // Return a copy of the set
38 void toArray(int32_t *array) const; // Convert set to array
39 operator ==; operator !=; //Set equality/inequality comparison
40

41 private:
42 using SetElement = GMS:: NodeId; //(4) Define a set element
43 }

Algorithm 1: The set algebra interface provided by GMS.

means that a vertex 𝑖 ∈ 𝐴 (“dense” indicates that all zero bits are

explicitly stored). While being usually larger than a sparse array, a

dense bitvector is more space-efficient when 𝐴 is very large, which

happens when some vertex connects to the majority of all vertices.

Now, depending on 𝐴’s and 𝐵’s representations, 𝐴 ∩ 𝐵 can itself

be implemented with different set algorithms. For example, if 𝐴

and 𝐵 are sorted sparse arrays with similar sizes (|𝐴| ≈ |𝐵 |), one
prefers the “merge” scheme where one simply iterates through 𝐴

and 𝐵, identifying common elements (taking 𝑂 ( |𝐴| + |𝐵 |) time).

If one set (e.g., 𝐵) is represented as a bitvector, one may prefer a

scheme where one iterates over the elements of a sparse array 𝐴

and checks if each element is in 𝐵, which takes 𝑂 (1) time, giving

the total of 𝑂 ( |𝐴|) time for the whole intersection.

Moreover, a bitvector enables insertion or deletion of vertices

into a set in 𝑂 (1) time, which is useful in algorithms that rely on

dynamic sets, for example Bron-Kerbosch [61, 79, 91, 207]. There are

more set representations with other performance characteristics,

such as sparse [1, 107] or compressed [34] bitvectors, or hashtables,

enabling further performance/storage tradeoffs.

Importantly, using different set representations or set algorithms
does not impact the formulations of graph algorithms. GMS exploits

this fact to facilitate development and experimentation.

By default, GMS offers three implementations of Set interface:

• RoaringSetA set is implemented with a bitmap compressed using

recent “roaring bitmaps” [64, 138]. A roaring bitmap offers diverse

compression forms within the same bitvector. They offer mild
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compression rates but do not incur expensive decompression. As

we later show, these structures result in high performance of graph

mining algorithms running on top of them.

• SortedSet GMS also offers sets stored as sorted vectors. This

reflects the established CSR graph representation design, where

each neighborhood is a sorted contiguous array of integers.

• HashSet Finally, GMS offers an implementation of Set with a

hashtable. By default, we use the Robin Hood library [62].

5.3 Set-Centric Graph Representations
Sets are building blocks for a graph representation: one set imple-

ments one neighborhood. To enable using arbitrary set designs,

GMS harnesses templates, typed by the used set definition, see

Listing 2. GMS provides ready-to-go representations based on the

RoaringSet, SortedSet, and HashSet set representations.

1 template <class TSet >
2 class SetGraph {
3 public:
4 using Set = TSet; int64_t num_nodes () const;
5 const Set& out_neigh(NodeId node) const;
6 int64_t out_degree(NodeId node) const;
7 /* Some functions omitted */ };

Algorithm 2: A generic graph representation.

5.4 Pipeline Interface
Beyond the set algebra related interfaces, GMS also offers a dedi-

cated API for easy experimenting with other parts of the processing

pipeline ( 1 – 5 ). This API is illustrated in Listing 3. It enables

separate testing of each particular stage, but also enables the user

to define and analyze their own specific stages.

1 class MyPipeline : public GMS:: Pipeline {
2 public:
3 //Any benchmark -specific arguments , including the input graph ,
4 //are passed to the constructor
5 MyPipeline(const GMS::CLI::Args &a, const SortedSetGraph &g);
6 // Functions for the individual steps.
7 void convert (); // Potential conversion of g to another format
8 void preprocess (); // Needed preprocessing
9 void kernel (); // Desired graph mining algorithm
10 private:
11 /* Any state variables that are shared between steps */ };

Algorithm 3: A generic graph representation.

5.5 PAPI Interface
GMS also uses the PAPI library for easy access to hardware perfor-

mance counters, cf. § 4.3. Importantly, we support seamless gather-

ing of the performance data from parallel code regions3 An example

usage of PAPI in GMS is in Listing 4. All the details on how to use the

GMS PAPI support are also available in the online documentation.

1 //Init PAPI for parallel use , measure CPU cycles
2 // stalled on memory accesses , and on any resources
3 GMS::PAPIW:: INIT_PARALLEL(PAPI_MEM_SCY , PAPI_RES_STL);
4 GMS::PAPIW::START();
5 #pragma omp parallel
6 {
7 // Benchmarked parallel region
8 }
9 GMS::PAPIW::STOP();

Algorithm 4: Using PAPI for detailed performance measurements of a parallel region in GMS.

3
We currently support OpenMP and plan to include other infrastructures such as Intel TBB.

6 HIGH-PERFORMANCE & SIMPLICITY
We now detail how using the GMS benchmarking platform leads to

simple (i.e., programmable) and high-performance implementations

of many graph mining algorithms.

We now use the GMS benchmarking platform to enhance ex-

isting graph mining algorithms. We provide consistent speedups

(detailed in Section 8). Some new schemes also come with theoreti-

cal advancements (detailed in Section 7). The following descriptions

focus on (1) how we ensure the modularity of GMS algorithms

(for programmability), and (2) what GMS design choices ensure

speedups. Selected modular parts are marked with the blue color

and the type of modularity ( 1 – 5+ ) (explained in § 3 and Figure 2)

. Marked set operations are implemented using the Set interface,
see Listing 1. Whenever we use parallelization (“in parallel”), we

ensure that it does not involve conflicting memory accesses. For

clarity, we focus on formulations and we discuss implementation

details (e.g., parallelization) in the next sections.

6.1 Use Case 1: Degeneracy Order & 𝑘-Cores
A degeneracy of a graph𝐺 is the smallest𝑑 such that every subgraph

in 𝐺 has a vertex of degree at most 𝑑 . Thus, degeneracy can serve

as a way to measure the graph sparsity that is “closed under taking

a graph subgraph” (and thus more robust than, for example, the

average degree). A degeneracy ordering (DGR) is an “ordering of

vertices of 𝐺 such that each vertex has 𝑑 or fewer neighbors that

come later in this ordering” [91]. DGR can be obtained by repeatedly

removing a vertex of minimum degree in a graph. The derived

DGR can be directly used to compute the 𝑘-core of𝐺 (a maximal

connected subgraph of 𝐺 whose all vertices have degree at least

𝑘). This is done by iterating over vertices in the DGR order, and

removing vertices with out-degree less than 𝑘 .

DGR, when used as a preprocessing routine, has been shown

to accelerate different algorithms such as Bron-Kerbosch [91]. In

the GMS benchmarking platform, we provide an implementation

of DGR that is modular and can be seamlessly used with other

graph algorithms as preprocessing ( 3 ). Moreover, we alleviate

the fact that the default DGR is not easily parallelizable and takes

𝑂 (𝑛) iterations even in a parallel setting. For this, GMS delivers a

modular implementation of a recent (2 + 𝜀)-approximate degener-
acy order [24] (ADG), which has 𝑂 (log𝑛) iterations for any 𝜀 > 0.

Specifically, the strict degeneracy ordering can be relaxed by intro-

ducing the approximation (multiplicative) factor 𝑘 that determines,

for each vertex 𝑣 , the additional number of neighbors that can be
ranked higher in the order than 𝑣 . Formally, in a 𝑘-approximate de-
generacy ordering, every vertex 𝑣 can have at most 𝑘 · 𝑑 neighbors

ranked higher in this order. Deriving ADG is in Algorithm 5. It is

similar to computing the DGR, which iteratively removes vertices

of the smallest degree. The main difference is that one removes

in parallel a batch of vertices with degrees smaller than (1 + 𝜀)𝛿𝑈
(cf. set 𝑅 and Line 7). The parameter 𝜀 ≥ 0 controls the accuracy

of the approximation; 𝛿𝑈 is the average degree in the induced sub-

graph 𝐺 (𝑈 , 𝐸 [𝑈 ]), 𝑈 is a “working set” that tracks changes to 𝑉 .

ADG relies on set cardinality and set difference, enabling the GMS

set algebra modularity (5+ ).
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1 //Input: A graph 𝐺 1 . Output: Approx. degeneracy order (ADG) 𝜂.

2 i = 1 // Iteration counter

3 𝑈 = 𝑉 //𝑈 is the induced subgraph used in each iteration 𝑖
4 while 𝑈 ≠ ∅ do:

5 𝛿𝑈 =
( ∑

𝑣∈𝑈 |𝑁𝑈 (𝑣) | 2
)

/ |𝑈 | //Get the average degree in 𝑈

6 //𝑅 contains vertices assigned priority in this iteration:

7 𝑅 = {𝑣 ∈ 𝑈 : |𝑁𝑈 (𝑣) | 2 ≤ (1 + 𝜀)𝛿𝑈 }
8 for 𝑣 ∈ 𝑅 in parallel 2 5 do: 𝜂 (𝑣) = i // assign the ADG order

9 𝑈 = 𝑈 \ 𝑅 5+ // Remove assigned vertices

10 i = i+1

Algorithm 5: Deriving the approximate degeneracy order (ADG) in GMS. More than one

number indicates that a given snippet is associated with more than one modularity type.

6.2 Use Case 2: Maximal Clique Listing
Maximal clique listing, inwhich one enumerates allmaximal cliques
(i.e., fully-connected subgraphs not contained in a larger such sub-

graph) in a graph, is one of core graph mining problems [61, 69, 79,

80, 88, 122, 129, 130, 141, 145, 149, 166, 186, 196, 199, 208, 214, 217,

223]. The recursive backtracking algorithm by Bron and Kerbosch

(BK) [56] together with a series of enhancements [79, 91, 92, 207]

(see Algorithm 6) is an established and, in practice, themost efficient

way of solving this problem. Intuitively, in BK, one iteratively con-

siders each vertex 𝑣 in a given graph, and searches for all maximal

cliques that contain 𝑣 . The search process is conducted recursively,
by starting with a single-vertex clique {𝑣}, and augmenting it with

𝑣 ’s neighbors, one at a time, until a maximal clique is found. Still,

the number of maximal cliques in a general graph, and thus BK’s

runtime, may be exponential [159].

Importantly, the order in which all the vertices are selected for

processing (at the outermost level of recursion) may heavily impact

the amount of work in the following iterations [79, 91, 92]. Thus, in

GMS, we use different vertex orderings, integrated using the GMS

preprocessing modularity ( 3 ). One of our core enhancements is to

use the ADG order (§ 6.1). As we will show, this brings theoretical

(Section 7) and empirical (Section 8) advancements.

A key part are vertex sets 𝑃 , 𝑋 , and 𝑅. They together navigate

the way in which the recursive search is conducted. 𝑃 (“Potential”)

contains candidate vertices that will be considered for belonging to

the clique currently being expanded.𝑋 (“eXcluded”) are the vertices

that are definitely not to be included in the current clique (𝑋 is

maintained to avoid outputting the same clique more than once). 𝑅

is a currently considered clique (may be non-maximal). In GMS, we

extensively experimented with different set representations for 𝑃 ,

𝑋 , and 𝑅, which was facilitated by the set algebra based modularity

(5+ ). Our goal was to use representations that enable fast “bulk”

set operations such as intersecting large sets (e.g., 𝑋 ∩ 𝑁 (𝑣) in
Line 23) but also efficient fine-grained modifications of such sets

(e.g., 𝑋 = 𝑋 ∪ {𝑣} in Line 28). For this, we use roaring bitmaps. As

we will show (Section 8), using such bitvectors as representations

of 𝑃 , 𝑋 , and 𝑅 brings overall speedups of even more than 9×.
Now, at the outermost recursion level, for each vertex 𝑣𝑖 , we

have 𝑅 = {𝑣𝑖 } (Line 13). This means that the considered clique

starts with 𝑣𝑖 . Then, we have 𝑃 = 𝑁 (𝑣𝑖 ) ∩ {𝑣𝑖+1, ..., 𝑣𝑛} and 𝑋 =

𝑁 (𝑣𝑖 ) ∩ {𝑣1, ..., 𝑣𝑖−1}. This removes unnecessary vertices from 𝑃

and 𝑋 . As we proceed in a fixed order of vertices in the main

loop, when starting a recursive search for {𝑣𝑖 }, we will definitely
not include vertices {𝑣1, ..., 𝑣𝑖−1} in 𝑃 , and thus we can limit 𝑃 to

𝑁 (𝑣𝑖 ) ∩ {𝑣𝑖+1, ..., 𝑣𝑛} (a similar argument applies to 𝑅). Note that

these intersections may be implemented as simple splitting of the

neighbors 𝑁 (𝑣𝑖 ) into two sets, based on the vertex order. This is

another example of the decoupling of general simple set algebraic

formulations in GMS and the underlying implementations (5+ ).

In each recursive call of BK-Pivot, each vertex from 𝑃 is added

to 𝑅 to create a new clique candidate 𝑅𝑛𝑒𝑤 explored in the follow-

ing recursive call. In this recursive call, 𝑃 and 𝑋 are respectively

restricted to 𝑃∩𝑁 (𝑣) and𝑋 ∩𝑁 (𝑣) (any other vertices besides𝑁 (𝑣)
would not belong to the clique 𝑅𝑛𝑒𝑤 anyway). After the recursive

call returns, 𝑣 is moved from 𝑃 (as it was already considered) to

𝑋 (to avoid redundant work in the future). The key condition for

checking if 𝑅 is a maximal clique is 𝑃 ∪𝑋 == ∅. If this is true, then
no more vertices can be added to 𝑅 (including the ones from 𝑋 that

were already considered in the past) and thus 𝑅 is maximal.

The BK variant in GMS also includes an additional important

optimization called pivoting [207]. Here, for any vertex 𝑢 ∈ 𝑃 ∪ 𝑋 ,
only 𝑢 and its non neighbors (i.e., 𝑃 \ 𝑁 (𝑢)) need to be tested as

candidates to be added to 𝑃 . This is because any potential maximal

clique must contain either 𝑢 or one of its non-neighbors. Otherwise,
a potential clique could be enlarged by adding 𝑢 to it. Thus, when

selecting 𝑢 (Line 20), one may use any scheme that minimizes |𝑃 \
𝑁 (𝑢) | [207]. The advantage of pivoting is that it further prunes the
search space and thus limits the number of recursive calls.

For further performance improvements, we also use roaring

bitmaps to implement graph neighborhoods, exploiting the GMS

modularity of representations and set algebra ( 1 , 2 , 5+ ).

An established way to derive the pivot vertex 𝑢 ∈ 𝑃 ∪ 𝑋 , intro-
duced by Tomita et al. [207], is to find 𝑢 = argmin𝑣∈𝑃∪𝑋 |𝑃 ∩𝑁 (𝑣) |.
This approach minimizes the size of 𝑃 before the associated re-

cursive BK-Pivot call. Yet, it comes with a computational burden,

because – to select𝑢 – onemust conduct the set operation |𝑃∩𝑁 (𝑣) |
as many as |𝑃 ∪ 𝑋 | times. This issue was addressed by proposing

to derive |𝑃 ∩ 𝑁𝐻 (𝑣) | instead of |𝑃 ∩ 𝑁 (𝑣) |, where 𝐻 is an in-

duced subgraph of 𝐺 , with the vertex set 𝑃 ∪ 𝑋 and the edge set

{{𝑥,𝑦} ∈ 𝐸 | 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ∪ 𝑋 } [92]. Using 𝑁𝐻 (𝑣) reduces the
amount of work in each |𝑃 ∩ 𝑁𝐻 (𝑣) |, because 𝑁𝐻 (𝑣) is smaller

than 𝑁 (𝑣). Such subgraph 𝐻 is precomputed before choosing 𝑢,

and is then passed to the recursive BK-Pivot call, to accelerate

precomputing subgraphs 𝐻 at deeper recursion levels.

We observe that the precomputed subgraph 𝐻 can be used not

only to accelerate pivot selection, but also in several other set

operations. First, one can use 𝑃 \ 𝑁𝐻 (𝑢) instead of 𝑃 \ 𝑁 (𝑢) to
reduce the cost of set difference; note that this does not introduce

more iterations in the following loop because no vertex in 𝑃 is

included in 𝑁 (𝑢) \ 𝑁𝐻 (𝑢). Second, we can also use 𝐻 to compute

𝑃 ∩ 𝑁𝐻 (𝑣) and 𝑋 ∩ 𝑁𝐻 (𝑣) instead of 𝑃 ∩ 𝑁 (𝑣) and 𝑋 ∩ 𝑁 (𝑣), also
reducing the amount of work in set intersections.

We also investigated the impact of constructing the𝐻 subgraphs

on each recursion level, as initially advocated [92], versus only at

the outermost level. We observe that, while the latter always offers

performance advantages due to the large reductions in work, the

former often introduces overheads that outweight gains, due to the

memory cost (from maintaining many additional subgraphs) and

the increase in runtimes (from constructing many subgraphs). In

our final BK-ADG version, we only derive 𝐻 at the outermost loop
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iteration, once for each vertex 𝑣 , and use a given 𝐻 at each level of

the search tree associated with 𝑣 .

We also developed a variant of BK-ADG that, similarly to BK-

DAS, uses nested parallelism at each level of recursion. This approach
proved consistently slower than the version without this feature.

1 /* Input: A graph 𝐺 1 . Output: all maximal cliques. */
2

3 //Preprocessing: reorder vertices with DGR or ADG; see § 6.1.

4 (𝑣1, 𝑣2, ..., 𝑣𝑛 ) = preprocess(𝑉 , /* selected vertex order */) 3
5

6 //Main part: conduct the actual clique enumeration.
7 for 𝑣𝑖 ∈ (𝑣1, 𝑣2, ..., 𝑣𝑛 ) do: // Iterate over 𝑉 in a specified order
8 //For each vertex 𝑣𝑖 , find maximal cliques containing 𝑣𝑖 .
9 //First , remove unnecessary vertices from 𝑃 (candidates
10 //to be included in a clique) and 𝑋 (vertices definitely
11 //not being in a clique) by intersecting 𝑁 (𝑣𝑖 ) with vertices
12 //that follow and precede 𝑣𝑖 in the applied order.

13 𝑃 = 𝑁 (𝑣𝑖 ) ∩ {𝑣𝑖+1, ..., 𝑣𝑛 } 5+ ; 𝑋 = 𝑁 (𝑣𝑖 ) ∩ {𝑣1, ..., 𝑣𝑖−1 } 5+ ; 𝑅 = {𝑣𝑖 }
14

15 //Run the Bron -Kerbosch routine recursively for 𝑃 and 𝑋 .
16 BK-Pivot(𝑃 , {𝑣𝑖 }, 𝑋 )
17

18 BK-Pivot(𝑃, 𝑅,𝑋 ) // Definition of the recursive BK scheme

19 if 𝑃 ∪𝑋 == 0 5+ : Output 𝑅 as a maximal clique

20 𝑢 = pivot(𝑃 ∪𝑋 ) 5+ // Choose a "pivot" vertex 𝑢 ∈ 𝑃 ∪𝑋
21 for 𝑣 ∈ 𝑃 \ 𝑁 (𝑢) 5+ : // Use the pivot to prune search space

22 //New candidates for the recursive search

23 𝑃𝑛𝑒𝑤 = 𝑃 ∩ 𝑁 (𝑣) 5+ ; 𝑋𝑛𝑒𝑤 = 𝑋 ∩ 𝑁 (𝑣) 5+ ; 𝑅𝑛𝑒𝑤 = 𝑅 ∪ {𝑣 } 5+

24 // Search recursively for a maximal clique that contains 𝑣
25 BK-Pivot(𝑃𝑛𝑒𝑤 , 𝑅𝑛𝑒𝑤 , 𝑋𝑛𝑒𝑤 )
26 //After the recursive call , update 𝑃 and 𝑋 to reflect
27 //the fact that 𝑣 was already considered

28 𝑃 = 𝑃 \ {𝑣 } 5+ ; 𝑋 = 𝑋 ∪ {𝑣 } 5+

Algorithm 6: Enumeration of maximal cliques, a Bron-Kerbosch variant by

Eppstein et al. [92] with GMS enhancements.

6.3 Use Case 3: 𝑘-Clique Listing
GMS enabled us to enhance a state-of-the-art 𝑘-clique listing al-

gorithm [78]. Our GMS formulation is shown in Algorithm 7. We

reformulated the original scheme (without changing its time com-

plexity) to expose the implicitly used set operations (e.g., Line 18), to

make the overall algorithmmoremodular. The algorithm uses recur-

sive backtracking. One starts with iterating over edges (2-cliques),

in Lines 11–12. In each backtracking search step, the algorithm

augments the considered cliques by one vertex 𝑣 and restricts the

search to neighbors of 𝑣 that come after 𝑣 in the used vertex order.

Two schemes marked with 3 indicate two preprocessing rou-

tines that appropriately reorder vertices and – for the obtained

order – assign directions to the edges of the input graph 𝐺 . Both

are well-known optimizations that reduce the search space size [78].

For such a modified 𝐺 , we denote out-neighbors of any vertex 𝑢

with 𝑁 + (𝑢). Then, operations marked with 5+ refer to accesses to

the graph structure and different set operations that can be replaced

with any implementation, as long as it preserves the semantics of

set membership, set cardinality, and set intersection.

The modular design and using set algebra enables us to easily

experiment with different implementations of 𝐶𝑖 , 𝑁
+ (𝑢) ∩𝐶𝑖 , and

others. For example, we successfully and rapidly redesigned the

reordering scheme, reducing the number of pointer chasing and the

total amounts of communicated data. We investigated the generated

assembly code of the respective part; it has 22 x86 mov instructions,

1 /*Input: A graph 𝐺 1 , 𝑘 ∈ N Output: Count of 𝑘 -cliques 𝑐𝑘 ∈ N. */

2

3 //Preprocessing: reorder vertices with DGR or ADG; see § 6.1.
4 //Here , we also record the actual ordering and denote it as 𝜂

5 (𝑣1, 𝑣2, ..., 𝑣𝑛 ;𝜂) = preprocess(𝑉 , /* selected vertex order */) 3
6

7 // Construct a directed version of 𝐺 using 𝜂. This is an
8 // additional optimization to reduce the search space:

9 𝐺 = dir(𝐺) 3 //An edge goes from 𝑣 to 𝑢 iff 𝜂 (𝑣) < 𝜂 (𝑢)
10 𝑐𝑘 = 0 //We start with zero counted cliques.

11 for 𝑢 ∈ 𝑉 in parallel do: 2 //Count u's neighboring 𝑘 -cliques

12 𝐶2 = 𝑁 + (𝑢); 𝑐𝑘 += count(2, 𝐺 , 𝐶2)
13

14 function count(𝑖, 𝐺 , 𝐶𝑖 ):

15 if (𝑖 == 𝑘): return |𝐶𝑘 | 5+ //Count 𝑘 -cliques

16 else:
17 ci = 0

18 for 𝑣 ∈ 𝐶𝑖 5+ do: // search within neighborhood of v

19 𝐶𝑖+1 = 𝑁 + (𝑣) ∩𝐶𝑖 5+ // 𝐶𝑖 counts 𝑖-cliques.

20 𝑐𝑖 += count(i+1, 𝐺 , 𝐶𝑖+1)
21 return ci

Algorithm 7: 𝑘-Clique Counting; see Listing 5 for the explanation of symbols.

compared to 31 before the design enhancement
4
. Moreover, we

improved the memory consumption of the algorithm. The space

allocated per subgraph 𝐶𝑖 (e.g., 5+ ) is now upper bounded by |𝐶𝑖 |2
(counted in vertices) instead of the default Δ2

. When parallelizing

over edges, this significantly reduces the required memory (for

large maximum degrees Δ, even up to >90%). Finally, the modular

approach taken by the GMS platform enables more concise (and

thus less complex) algorithm formulation. Specifically, the original

version had to use a separate routine for listing cliques for 𝑘 = 3,

while the GMS’s reformulation enables all variants for 𝑘 ≥ 3.

6.4 Use Case 4: Subgraph Isomorphism
GMS ensured speedups in the most recent parallel variant of the

VF3 subgraph isomorphism algorithm [59, 60]. Here, the GMS plat-

form facilitates plugging in arbitrary variants of algorithms without

having to modify other parts of the toolchain ( 4 – 5 ) (Listing is

in the extended report). First, example used optimizations in the

baseline arework splitting combined withwork stealing. Specifically,
threads receive lists of vertices fromwhich they start recursive back-

tracking. However, due to diverse graph structure, this search can

take a variable amount of time (because there is more backtracking

for some vertices) so some threads finish early. To combat this, we

use a lockfree queue, where idling threads steal work from other

threads. The queue element is the ID of a vertex from where to be-

gin backtracking. The thread performs a compare-and-swap (CAS)

atomic to retrieve a vertex from its queue. Idle threads select threads

(that they steal from) uniformly at random. We also use a precom-
pute scheme: during runtime, we gather information about possible

mappings between vertices with their neighborhoods, and certain

specific query graphs. This can accelerate, for example, searching

through certain parts of the target graph.

6.5 Use Case 5: Vertex Similarity & Clustering
We include vertex similarity and clustering in GMS. Vertex similar-

ity measures heavily use ∩. For example, the well-known Jaccard

4
We used “compiler explorer” (https://godbolt.org/) for assembly analysis
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★ Max. Cliques
with ADG (§ 7.3)

Subgr. Isomorphism
Node Parallel [58, 75]

Link Prediction† ,
JP Clustering

Work 𝑂

(
𝑚𝑘

(
𝑑
2

)𝑘−2)
𝑂

(
𝑚𝑘

(
𝑑
2

)𝑘−2)
𝑂

(
𝑚𝑘

(
𝑑 + 𝜀

2

)𝑘−2)
𝑂 (𝑚) 𝑂

(
𝑑𝑚3

𝑑/3
)

𝑂

(
3
𝑛/3

)
𝑂

(
𝑑𝑚3

(2+𝜀 )𝑑/3
)

𝑂

(
𝑛Δ𝑘−1

)
𝑂 (𝑚Δ)

Depth𝑂
(
𝑛 + 𝑘

(
𝑑
2

)𝑘−1)
𝑂

(
𝑛 + 𝑘

(
𝑑
2

)𝑘−2
+ 𝑑2

)
𝑂

(
𝑘
(
𝑑 + 𝜀

2

)𝑘−2 + log
2 𝑛 + 𝑑2

)
𝑂

(
log

2 𝑛

)
𝑂

(
𝑑𝑚3

𝑑/3
)

𝑂 (𝑑 log𝑛) 𝑂

(
log

2 𝑛 + 𝑑 log𝑛
)
𝑂

(
Δ𝑘−1

)
𝑂 (Δ)

Space 𝑂 (𝑛𝑑2 +𝐾) 𝑂

(
𝑚𝑑2 +𝐾

)
𝑂

(
𝑚𝑑2 +𝐾

)
𝑂 (𝑚) 𝑂 (𝑚 + 𝑛𝑑 +𝐾) 𝑂 (𝑚 + 𝑝𝑑Δ +𝐾) 𝑂 (𝑚 + 𝑝𝑑Δ +𝐾) 𝑂 (𝑚 + 𝑛𝑘 +𝐾) 𝑂 (𝑚Δ)

Table 5: Work, depth, and space for some graph mining algorithms in GMS. 𝑑 is the graph degeneracy, 𝐾 is the output size, Δ is the maximum degree, 𝑝 is the number of

processors, 𝑘 is the number of vertices in the graph that we are mining for, 𝑛 is the number of vertices in the graph that we are mining, and𝑚 is the number of edges in that graph.

†
Link prediction and the JP clustering complexities are valid for the Jaccard, Overlap, Adamic Adar, Resource Allocation, and Common Neighbors vertex similarity measures.

★Algorithms derived in this work. Additional bounds for BK are in Table 6

and overlap similarities of 𝑢, 𝑣 ∈ 𝑉 are defined as
|𝑁 (𝑢)∩𝑁 (𝑣) |
|𝑁 (𝑢)∪𝑁 (𝑣) | and

|𝑁 (𝑢)∩𝑁 (𝑣) |
min( |𝑁 (𝑢) |, |𝑁 (𝑣) |) . We provide a modular implementation in the

GMS platform (5+ ), where one can use different set representations

(bitvectors, compressed bitvectors, integer arrays, others) and two

different routines for ∩: (1) simple merging of sorted sets (taking

𝑂 ( |𝑁 (𝑣) | + |𝑁 (𝑢) |) time) and a “galloping” variant where, for each

element 𝑥 from a smaller set 𝑁 (𝑣), one uses binary search to check

if 𝑥 ∈ 𝑁 (𝑢) (taking 𝑂 ( |𝑁 (𝑣) | log |𝑁 (𝑢) |) time). This enables fine

tuning performance.

6.6 Use Case 6: 𝑘-Clique-Star Listing
A 𝑘-clique-star is a 𝑘-clique with additional neighboring vertices

that are connected to all the vertices in the clique. 𝑘-clique-stars

were proposed as graph motifs that relax the restrictive nature of

𝑘-cliques [117] (large cliques are expected to be rare because every
vertex in a clique, regardless of the clique size, must be connected to

all other vertices in this clique). Our observation is that those extra

vertices that are connected to the 𝑘-clique actually form a (𝑘 + 1)-
clique (together with this 𝑘-clique). Thus, to find 𝑘-clique-stars, we

first mine (𝑘 + 1)-cliques. Then, we find 𝑘-clique-stars within each

(𝑘 + 1)-clique using set union, membership, and difference.

6.7 Use Case 7: Link Prediction
Here, one is interested in developing schemes for predictingwhether

two non-adjacent vertices can become connected in the future.

There exist many schemes for such prediction [10, 142, 146, 202] and

for assessing the accuracy of a specific link prediction scheme [211].

We start with some graph with known links (edges). We derive

𝐸𝑠𝑝𝑎𝑟𝑠𝑒 ⊆ 𝐸, which is 𝐸 with random links removed; 𝐸𝑠𝑝𝑎𝑟𝑠𝑒 =

𝐸 \ 𝐸𝑟𝑛𝑑𝑚 . 𝐸𝑟𝑛𝑑𝑚 ⊆ 𝐸 are randomly selected missing links from 𝐸

(links to be predicted). We have 𝐸𝑠𝑝𝑎𝑟𝑠𝑒 ∪ 𝐸𝑟𝑛𝑑𝑚 = 𝐸 and 𝐸𝑠𝑝𝑎𝑟𝑠𝑒 ∩
𝐸𝑟𝑛𝑑𝑚 = ∅. Now, we apply the link prediction scheme 𝑆 (that we

want to test) to each edge 𝑒 ∈ (𝑉 ×𝑉 ) \ 𝐸𝑠𝑝𝑎𝑟𝑠𝑒 . The higher a value
𝑆 (𝑒), the more probable 𝑒 is to appear in the future (according to

𝑆). Now, the effectiveness 𝑒 𝑓 𝑓 of 𝑆 is computed by verifying how

many of the edges with highest prediction scores (𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ) actually

are present in the original dataset 𝐸: 𝑒 𝑓 𝑓 = |𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∩ 𝐸𝑟𝑛𝑑𝑚 |.

6.8 Developing Graph Representations
The right data layout is one of key enablers of high performance.

There exists a plethora of graph representations, layouts, models,

and compression schemes [34]. Different compression schemes

may vastly differ in the compression ratio as well as the perfor-

mance of accessing and mining a graph. For example, some graphs

compressed with a combination of techniques implemented in the

WebGraph framework [49] can use even below one bit per link.

Yet, decompression overheads may significantly impact the perfor-

mance of graph mining algorithms running on such compressed

graphs. Then, a recent compressed Log(Graph) representation can

deliver 20-35% space reductions with simple bit packing, while elim-

inating decompression overheads or even delivering speedups due
to reduced amounts of transferred data [40]. Besides graph compres-

sion, there exist many other schemes related to representations, for

example NUMA-awareness in graph storage [222]; they all impact

performance of graph processing.

We consider the aspect of data layout and graph representation

design in GMS and we enable the user to analyze relationships
between graph storage and the performance of graph algorithms.

Graph models & representations

CSR aka 
Adjacency

Array

Compression schemes

Log(Graph)

Succinct
& compact
bit vectors

Adjacency
structure

Offset
structure

Bit packing
Fine grained

elements

Adjacency
Matrix

Adjacency
List

2 Provide appropriate
graph accesses 3.1

Apply a relabeling
(a permutation of

vertex IDs)1 Pick a graph
representation 3.2 Apply transformations

(e.g., a compression)

Gap
encodingRun-length encoding

Various encodings

Huffman degree
(degree minimizing)

Vertex relabelings

Variable-
length

encoding

k  -trees2

Recursive
bisectioning

Reference
encoding

...

Figure 3: Selected storage schemes (graphmodels, representations, and graph compressionmethods) considered in the GMS platform.All the schemes are outlined
and pictured in more detail in Figure 10 (in the Appendix) and described in detail in a recent survey [34]. Developing and using a specific representation in GMS
corresponds to steps 1 – 3 in the pipelined GMS design (cf. Figure 2).
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Specifically, the user can rapidly develop or use an existing stor-

age scheme and analyze its space utilization and its impact on

the performance of graph algorithms and graph queries. The con-

sidered storage schemes are illustrated in Figure 3, they include

graph models and representations (e.g., Log(Graph) [40]), and
graph compression schemes (e.g., difference encoding [34], 𝑘2-
trees [55], bit packing [34], or succinct offsets [34, 101]). All these

schemes offer different trade-offs between the required storage

space and the delivered performance. The current version of GMS

implements many of these schemes, but it also offers an intuitive

and extensive interface that facilitates constructing new ones.

We provide more details of these storage schemes, and how to

use them, in the Appendix (Section B). In general, in GMS, one

first selects a model to be used (by default, it is the Adjacency

List Model) and its specific implementation. GMS uses a simple

Compressed Sparse Row (CSR) by default. Other available schemes

include Log(Graph) with its bit packing of vertex IDs or succinct

and compact offsets to neighborhoods [40]. Then, one must provide

the implementation of graph accesses (fetching neighbors or a given

vertex, checking the degree of a given vertex, verifying if a given

edge exists). After that, one may apply additional preprocessing.

First, one can relabel vertex IDs (i.e., apply a permutation of vertex

IDs), for example the Huffman degree relabeling. Second, one may

provide a transformation of each (permuted) neighborhood, for

example encoding neighborhoods using Varint compression.

Further details on the permutations and transformations of ver-

tex neighborhoods can also be found in the Log(Graph) paper [40].

7 CONCURRENCY ANALYSIS
In this part of GMS, we show how to assess a priori the properties of

parallel graph mining algorithms, reducing time spent on algorithm
design and development and providing performance insights that are
portable across machines that differ in certain ways (e.g., in the sizes
of their caches) and independent of various implementation details.
We first broadly discuss the approach and the associated trade-

offs. Second, as use cases, we pick 𝑘-clique and maximal clique

listing, and we enhance state-of-the-art algorithms addressing these
problems. Table 5 summarizes the GMS theoretical results; many

of these bounds are novel.

7.1 Methodology, Models, Tools
We use the established work-depth analysis for bounding run-times

of parallel algorithms. Here, the total number of instructions per-

formed by an algorithm (over all number of processors for a given

input size) is the work of the algorithm. The longest chain of se-

quential dependencies (for a given input size) is the depth of an

algorithm [42, 45]. This approach is used in most recent formal anal-

yses of parallel algorithms in the shared-memory setting [83, 111].

Overall, we consider four aspects of a parallel algorithm: (1) the

overhead compared to a sequential counterpart, quantified with

work, (2) the scalability, which is illustrated by depth, (3) the space

usage, and – when applicable – (4) the approximation ratio. These

four aspects often enable different tradeoffs.

7.2 Discussion On Trade-Offs
For many problems, there is a tradeoff between work, depth,
space, and sometimes approximation ratio [78, 125, 157]. Which

algorithm is the best choice hence depends on the available number

of processors and the available main memory. For today’s shared

memory machines, typically the number of processors/cores is

relatively small (e.g., 18 on our machines) and main memory is not

much bigger than the graphs we would like to process (e.g., 64GiB

or 768GiB on our machines, see Section 8). Thus, reducing work
(and maintaining close to linear space in the input plus output) is a
high priority to obtain good performance in practice [83].

An algorithm with a work that is much larger than the best

sequential algorithm will require many processors to be faster than

the latter. An algorithm with large depth will stop scaling for a

small number of processors. An estimate of the runtime of an algo-

rithm with work𝑊 and depth 𝐷 on 𝑝 processors is𝑊 /𝑝 + 𝐷 . This
estimate is optimistic as it neglects the cost for scheduling threads

and caching issues (e.g., false sharing). Yet, it has proven a useful

model in developing efficient graph algorithms in practice [83].

The space used by a parallel algorithm limits the largest problem

that can be solved on a fixed machine. This is crucial for graph

mining problems with exponential time complexities where we

want the space to be close to the input size plus the output size.
We illustrate a work / depth / space tradeoff with 𝑘-clique list-

ing [78] (§ 6.3). All following designs are pareto-optimal in terms

of the work / depth / space tradeoff and they are useful in different

circumstances (for different machines).

First, consider a naive algorithm variant. Starting from every

vertex, one spawns parallel recursive searches to complete the

current clique. The advantage of this approach is that is has low

depth 𝑂 (𝑘), but the work and space is Θ(𝑛Δ𝑘−1), which can be

prohibitive.

This approach can be enhanced by using the DGR order to guide

the search as described in § 6.3 (the “Node Parallel” variant). Here,
one invokes a parallel search starting from each vertex for cliques

that contain this vertex as the first vertex in the order. This reduces

the space to almost linear Θ(𝑛𝑑2), where 𝑑 is the degeneracy of the

graph. The depth is increased to Θ(𝑛 +𝑘 (𝑑/2)𝑘−1). This design was

reported to have poor scalability in practice [78].

One can also invoke a parallel search for every edge (“Edge Par-
allel”) and try to find a clique that contains it (and follows the DGR
order). The depth decreases by a factor of𝑑 toΘ(𝑛+𝑘 (𝑑/2)𝑘−2+𝑑2),
but the space increases by a factor of

𝑚
𝑛 to 𝑂 (𝑚𝑑2). This approach

has a good work / depth / space tradeoff in practice [78].

7.3 Bounds for Graph Mining Algorithms
Table 5 presents work-depth and space bounds for considered graph

mining algorithms. Here, we obtain new better bounds for maximal

clique listing. The main idea is to combine existing corresponding

algorithms [79, 92] with the ADG ordering. Specifically, the new

maximal clique listing improves upon the Eppstein et al. [92] and

Das et al. [79]: our depth is better than both while work is better

than that of [92] and adds only a small factor to work in [92]. We

also provide a new 𝑘-clique listing variant, again by using ADG.

The variant scales better than Danisch et al. [78] (column 2) if 𝑛 is
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much bigger than 𝑘𝑑𝑘−2. This variant matches a recent scheme by

Shi et al. [191], which uses a similar approach.

7.4 Improving 𝑘-Clique Listing
Finally, one can use the approximate degeneracy order (ADG,
cf. § 6.1) instead of DGR, which results in new performance bounds.

Proceed as for the Edge Parallel variant, but use the (2+𝜀)-approximate

parallel degeneracy order. This is easy to implement in the GMS

benchmarking platform, as all one has to do is to change the

preprocessing reordering routine from DGR to ADG. The depth

becomes Θ(𝑘 (𝑑 + 𝜀
2
)𝑘−2 + log

2 𝑛) and the work is increased to

Ω(𝑚𝑘 (𝑑 + 𝜀
2
)𝑘−2). This design scales better if 𝑛 is much bigger than

𝑘𝑑𝑘−2 and outperforms other variants in practice (see Section 8).

7.5 Improving Maximal Clique Listing
We now analyze our parallel maximal clique listing algorithm

(cf. § 6.2) The key idea is to use ADG, the relaxation of the strict

degeneracy order when processing vertices iteratively in the high-

est level of recursion in the BK algorithm. As in 𝑘-cliques, this is

easy to implement with the GMS platform. This improves upon the

Eppstein et al. [92] (BK-E) and Das et al. [79] (BK-DAS): our depth

is better than both while work is better than that of BK-DAS and

adds only a small factor to the work amount in BK-E.

For constant degeneracy graphs, our algorithm has linear work

and poly-logarithmic depth, see Table 5 for a comparison with

previous work. We note that, for many classes of sparse graphs,

such as scale-free networks [16] and planar graphs [225], Δ ≫ 𝑑 .

Moreover, we often also have log𝑛 ≪ Δ. Thus, the depth of BK-

ADG is in such cases lower than that of BK-DAS.

We provide our bounds for the case where nested parallelism
is employed. If only the outer loop which launches the calls to

BK-Pivot and the construction of the arguments to BK-Pivot is

parallelized, the depth is still𝑂 ((𝑑Δ) (2+𝜀)𝑑/3) and the space is only
𝑂 (𝑚 + 𝑛𝑑 + 𝐾) (where 𝐾 is the output size).

Work Depth

Chiba and Nishizeki [69] 𝑂

(
𝑑2𝑛 (𝑛 − 𝑑)3𝑑/3

)
𝑂

(
𝑑2𝑛 (𝑛 − 𝑑)3𝑑/3

)
.

Chiba and Nishizeki [69] 𝑂

(
𝑛𝑑𝑑+1

)
𝑂

(
𝑛𝑑𝑑+1

)
.

Chrobak and Eppstein [72] 𝑂

(
𝑛𝑑22𝑑

)
𝑂

(
𝑛𝑑22𝑑

)
.

Eppstein et al. [92] 𝑂

(
𝑑𝑚 3

𝑑
3

)
𝑂

(
𝑑𝑚 3

𝑑
3

)
.

Das et al. [79] 𝑂

(
3

𝑛
3

)
𝑂 (𝑑 log𝑛) .

This Paper 𝑂

(
𝑑𝑚 3

(2+𝜀 )𝑑
3

)
𝑂

(
log

2 𝑛 + 𝑑 log𝑛
)
.

Table 6: Additional bounds for enumerating all maximal cliques.

We first state the cost of computing the ADG order (cf. § 6.1),

which is the key difference to the algorithm by Das et al. [79].

Lemma 7.1. Computing a (2 + 𝜀)-approximate degeneracy order
takes 𝑂 (𝑚) work and 𝑂 (log2 𝑛) depth, for any constant 𝜀.

Eppstein gave a generic work bound for an invocation of BK-

Pivot(𝑃 , 𝑣𝑖 , 𝑋 ) that we can use for our setting.

Lemma 7.2 (Eppstein [92]). Excluding the work to report the found
maximal cliques, BK-Pivot(𝑃 , 𝑣𝑖 , 𝑋 ) takes 𝑂 ((𝑑 |𝑋 |)3 |𝑃 |/3) work.

We combine Eppstein’s bound with the bounds on BK-Pivot and

ADG to obtain work and depth bounds for BK-ADG.

Lemma 7.3. Finding all maximal cliques with BK-ADG takes
𝑂 (𝑑𝑚 3

(2+𝜀)𝑑/3) work and 𝑂 (log2 𝑛 + 𝑑 log𝑛) depth.

Proof. We first sketch the used parallel compute primitives.

Intersecting two sets𝐴 and 𝐵 takes𝑂 ( |𝐴| |𝐵 |) work and𝑂 (1) depth.
Performing a Reduction over an array of 𝑛 values (for example to

compute their sum) takes 𝑂 (𝑛) work and 𝑂 (log𝑛) depth.
Computing ADG takes 𝑂 (𝑚) work and 𝑂 (log2 𝑛) depth; see

Lemma 7.1. Next, for all invocations of BK-Pivot, |𝑃 | ≤ (2 + 𝜀)𝑑 ,
by the properties of the ADG order. Moreover, the size of the set

|𝑋 | in the invocation of BK-Pivot(𝑃 , 𝑣𝑖 , 𝑋 ) is at most Δ(𝑣𝑖 ). Hence,
by using Lemma 7.2 for each invocation of BK-Pivot, we conclude

that the work is 𝑂 (𝑑𝑚 3
(2+𝜀)𝑑/3), excluding the cost to output the

maximal cliques. Because there are (𝑛−𝑑)3𝑑/3 maximal cliques [92],

the work is not dominated by the cost to report the maximal cliques.

The depth of BK-Pivot is 𝑂 (𝑀 log𝑛), where𝑀 is the size of the

maximum clique [79]. As the size of the largest clique is bounded

by the degeneracy (i.e., 𝑀 < 𝑑), this is 𝑂 (𝑑 log𝑛). All the calls to
BK-Pivot from BK-ADG can be launched simultaneously. □

8 EVALUATION
We describe how GMS facilitates performance analysis of various

aspects of graph mining, and accelerates the state of the art. We
focus on accelerating the four core mining problems from Section 6.

8.1 Datasets, Methodology, Architectures
We first sketch the evaluation methodology. For measurements, we

omit the first 1% of performance data as warmup. We derive enough

data for the mean and 95% non-parametric confidence intervals.

We use arithmetic means as summaries.

8.1.1 Datasets. We consider SNAP (S) [140], KONECT (K) [131],

DIMACS (D) [82], Network Repository (N) [180], and WebGraph

(W) [48] datasets. As explained in § 4.2, for flexibility, we do not fix

specific datasets. Instead, we illustrate a wide selection of public

datasets in Table 7, arguing which parameters make them useful or
challenging. Details of these parameters are in § 4.2.

8.1.2 Comparison Baselines. For each considered graph mining

problem, we compare different GMS variants to the most optimized
state-of-the-art algorithms available. We compare to the original ex-

isting implementations. Details are stated in the following sections.

8.1.3 Parallelism. Unless stated otherwise, we use full parallelism,

i.e., we run algorithms on the maximum number of cores available on
a given system. We also analyzed scaling (how performance changes

when varying number of used cores), the results show consistent

advantages of GMS variants over other baselines.

8.1.4 Architectures. We used different systems for a broad evalua-
tion and to analyze and ensure performance portability of our imple-

mentations. First, we use an in-house Einstein and Euler servers.

Einstein is a Dell PowerEdge R910 with an Intel Xeon X7550 CPUs
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Figure 4: Speedups of the parallel GMS BK algorithm over a state-of-the-art implementation by Das et al. [79] (BK-DAS) and a recent algorithm by Eppstein et al. [91]

(BK-GMS-DGR). System: Daint.

@ 2.00GHz with 18MB L3 cache, 1TiB RAM, and 32 cores per CPU

(grouped in four sockets). Euler has an HT-enabled Intel Xeon Gold

6150 CPUs @ 2.70GHz with 24.75MB L3 cache, 64 GiB RAM, and

36 cores per CPU (grouped in two sockets). We also use servers

from the CSCS supercomputing center, most importantly a compute

server with Intel Xeon Gold 6140 CPU@ 2.30GHz, 768 GiB RAM, 18

cores, and 24.75MB L3. Finally, we also used XC50 compute nodes

in the Piz Daint Cray supercomputer (one such node comes with

12-core Intel Xeon E5-2690 HT-enabled CPU 64 GiB RAM).

8.2 Faster Maximal Clique Listing
We start with our key result: GMS enabled us to outperform a state-
of-the-art fastest available algorithm for maximal clique listing by

Das et al. [79] (BK-DAS) by nearly an order of magnitude. The
results are in Figure 4. We compare BK-DAS with several variants

of BK developed in GMS as described in § 6. BK-GMS-DGR uses

the degeneracy order and is a variant of the Eppstein’s scheme [91],

enhanced in GMS. BK-GMS-DEG uses the simple degree ordering.

BK-GMS-ADG and BK-GMS-ADG-S are two variants of a new BK

algorithm proposed in this work, combining BK with the ADG

ordering; the latter also uses the subgraph caching optimization

( § 6). We also compare to the original Eppstein scheme, it was

always slower. GMS also enabled us to experiment with Intel Thread

Building Blocks vs. OpenMP for threading in both the outermost

loop and in inner loops (we exploit nested parallelism), we only

show the OpenMP variants as they always outperform TBB.

Figure 4 shows consistent speedups of GMS variants over BK-

DAS. We could quickly deliver these speedups by being able to

plug in different set operations and optimizations in BK. Moreover,

many plots show the large preprocessing overhead when using

DGR. It sometimes helps to reduce the actual clique listing time

(compared to ADG), but in most cases, “ADG plus clique listing”

are faster than “DGR plus clique listing”: ADG is very fast and it

reduces the BK runtime to the level comparable to that achieved by

DGR. This confirms the theoretical predictions of the benefits of BK-

GMS-ADG over BK-GMS-DGR or BK-DAS. Finally, the comparably

high performance (for many graphs) of BK-GMS-ADG, BK-GMS-

ADG-S, and BK-GMS-DEG is due to the optimizations based on set

algebra, for example using fast and compressed roaring bitmaps to

implement neighborhoods and auxiliary sets 𝑃 , 𝑋 , and 𝑅 (cf. § 6),

which enables fast set operations heavily used in BK. Overall, BK-
GMS is often faster than BK-DAS by >50%, in some cases even >9×.

We stress that the speedups of the implementations included in

the GMS benchmarking platform are consistent over many graphs

of different structural characteristics (cf. Table 7) that entail deeply
varying load balancing properties. For example, some graphs are

very sparse, with virtually no cliques larger than triangles (e.g.,

the USA road network) while others are relatively sparse with

many triangles (and higher cliques), with low or moderate skews

in triangle counts per vertex (e.g., Gearbox or F2). Finally, some

graphs have large or even huge skews in triangle counts per vertex

(e.g., Gupta3 or RecDate), which gives significant differences in the

depths of the backtracking trees and thus load imbalance.

We also derived the algorithmic efficiency results, i.e., the

number of maximal cliques found per second; selected data is in

Figure 1. The results follow the run-times; the GMS schemes con-

sistently outperform BK-DAS (the plots are in the technical report).

These results show more distinctively that BK-GMS finds maxi-

mal cliques consistently better than BK-DAS, even if input graphs

have vastly different clustering properties. For example, BK-GMS-

ADG outperforms BK-DAS for Gupta3 (huge 𝑇 -skew), F2 (medium

𝑇 -skew), and ldoor (low 𝑇 -skew).

8.3 Faster 𝑘-Clique Listing
GMS also enabled us to accelerate a very recent 𝑘-clique listing algo-
rithm [78], see Figure 5. We were able to rapidly experiment with
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Graph † 𝑛 𝑚
𝑚
𝑛 𝑑𝑖 𝑑𝑜 𝑇 𝑇

𝑛
Why selected/special?

[so] (K) Orkut 3M 117M 38.1 33.3k 33.3k 628M 204.3 Common, relatively large
[so] (K) Flickr 2.3M 22.8M 9.9 21k 26.3k 838M 363.7 Large𝑇 but low𝑚/𝑛.
[so] (K) Libimseti 221k 17.2M 78 33.3k 25k 69M 312.8 Large𝑚/𝑛
[so] (K) Youtube 3.2M 9.3M 2.9 91.7k 91.7k 12.2M 3.8 Very low𝑚/𝑛 and𝑇
[so] (K) Flixster 2.5M 7.91M 3.1 1.4k 1.4k 7.89M 3.1 Very low𝑚/𝑛 and𝑇

[so] (K) Livemocha 104k 2.19M 21.1 2.98k 2.98k 3.36M 32.3
Similar to Flickr, but
a lot fewer 4-cliques (4.36M)

[so] (N) Ep-trust 132k 841k 6 3.6k 3.6k 27.9M 212 Huge𝑇 -skew (𝑇 = 108k)
[so] (N) FB comm. 35.1k 1.5M 41.5 8.2k 8.2k 36.4M 1k Large𝑇 -skew (𝑇 = 159k)
[wb] (K) DBpedia 12.1M 288M 23.7 963k 963k 11.68B 961.8 Rather low𝑚/𝑛 but high𝑇
[wb] (K) Wikipedia 18.2M 127M 6.9 632k 632k 328M 18.0 Common, very sparse
[wb] (K) Baidu 2.14M 17M 7.9 97.9k 2.5k 25.2M 11.8 Very sparse
[wb] (N) WikiEdit 94.3k 5.7M 60.4 107k 107k 835M 8.9k Large𝑇 -skew (𝑇 = 15.7M)

[st] (N) Chebyshev4 68.1k 5.3M 77.8 68.1k 68.1k 445M 6.5k
Very large𝑇 and 𝑇 /𝑛
and 𝑇 -skew (𝑇 = 5.8M)

[st] (N) Gearbox 154k 4.5M 29.2 98 98 141M 915
Low 𝑑 but large𝑇 ;
low𝑇 -skew (𝑇 = 1.7k)

[st] (N) Nemeth25 10k 751k 75.1 192 192 87M 9k Huge𝑇 but low𝑇 = 12k
[st] (N) F2 71.5k 2.6M 36.5 344 344 110M 1.5k Medium𝑇 -skew (𝑇 = 9.6k)
[sc] (N) Gupta3 16.8k 4.7M 280 14.7k 14.7k 696M 41.5k Huge𝑇 -skew (𝑇 = 1.5M)
[sc] (N) ldoor 952k 20.8M 21.5 76 76 567M 595 Very low𝑇 -skew (𝑇 = 1.1k)
[re] (N) MovieRec 70.2k 10M 142.4 35.3k 35.3k 983M 14k Huge𝑇 and𝑇 = 4.9M
[re] (N) RecDate 169k 17.4M 102.5 33.4k 33.4k 286M 1.7k Enormous𝑇 -skew (𝑇 = 1.6M)
[bi] (N) sc-ht (gene) 2.1k 63k 30 472 472 4.2M 2k Large𝑇 -skew (𝑇 = 27.7k)
[bi] (N) AntColony6 164 10.3k 62.8 157 157 1.1M 6.6k Very low𝑇 -skew (𝑇 = 9.7k)
[bi] (N) AntColony5 152 9.1k 59.8 150 150 897k 5.9k Very low𝑇 -skew (𝑇 = 8.8k)
[co] (N) Jester2 50.7k 1.7M 33.5 50.8k 50.8k 127M 2.5k Enormous𝑇 -skew (𝑇 = 2.3M)
[co] (K) Flickr
(photo relations) 106k 2.31M 21.9 5.4k 5.4k 108M 1019

Similar to Livemocha, but
many more 4-cliques (9.58B)

[ec] (N) mbeacxc 492 49.5k 100.5 679 679 9M 18.2k Large𝑇 , low𝑇 = 77.7k
[ec] (N) orani678 2.5k 89.9k 35.5 1.7k 1.7k 8.7M 3.4k Large𝑇 , low𝑇 = 80.8k
[ro] (D) USA roads 23.9M 28.8M 1.2 9 9 1.3M 0.1 Extremely low𝑚/𝑛 and𝑇

Table 7: Some considered real-world graphs. Graph class/origin: [so]: social network, [wb]: web graph, [st]: structural network, [sc]: scientific computing, [re]: recommendation

network, [bi]: biological network, [co]: communication network, [ec]: economics network, [ro]: road graph. Structural features:𝑚/𝑛: graph sparsity, 𝑑𝑖 : maximum in-degree, 𝑑𝑜 :

maximum out-degree,𝑇 : number of triangles,𝑇 /𝑛: average triangle count per vertex,𝑇 -skew: a skew of triangle counts per vertex (i.e., the difference between the smallest and

the largest number of triangles per vertex). Here,𝑇 is the maximum number of triangles per vertex in a given graph. Dataset: (W), (S), (K), (D), (C), and (N) refer to the publicly

available datasets, explained in § 8.1. For more details, see § 4.2.

different variants, such as node parallel and edge parallel schemes,

described in § 6.3 and in Section 7. Our optimizations from § 6.3

(e.g., a memory-efficient layout of𝐶𝑖 ) ensure consistent speedups of

up to 10% for different parameters (e.g., clique size 𝑘), input graphs,

and reordering routines. Additionally, we show that using the ADG

order brings further speedups over DEG or DGR.

8.4 Faster Degeneracy Reordering and 𝑘-Cores
We also analyze in more detail the performance of different re-

ordering routines (DEG, DGR, and ADG) and their impact on graph

mining algorithms in GMS (cf. § 6). We also show their impact on

the run-time of BK maximal clique listing by Eppstein et al. [91]

(BK-E). The results are in Figure 6. ADG, due to its beneficial scala-

bility properties (cf. Section 7), outperforms the exact DGR. At the
same time, it similarly reduces the runtime of BK-E [91] (cf. left-

most and rightmost bars). The 2 + 𝜀 approximation ratio has mild

influence on performance. Specifically, the lower 𝜀 is, the more

(mild) speedup is observed. This is because larger 𝜀 enables more

parallelism, but then less accurate degeneracy ordering may incur

more work when listing cliques. Moreover, ADG combined with

BK-E cumulatively outperforms the simple DEG reordering: the latter

is also fast, but its impact on the Bron-Kerbosch run-time is lower,

ultimately failing to provide comparable speedups. We note that the

results of BK+DGR being slower than BK+DEG are consistent with

independent results in a recent BK paper [79]. This additionally

highlights our insight that using ADG over DGR and DEG is the

fastest of all three variants. We were able to rapidly experiment

with different reorderings as – thanks to GMS’s modularity – we

could seamlessly integrate them with BK-E [91].

8.5 Faster Subgraph Isomorphism
GMS enabled us to accelerate a very recent parallel VF3-Light sub-
graph isomorphism baseline by 2.5×. The results are in Figure 7 (we

use the same dataset as in the original work [60]). We illustrate

the impact from different optimizations outlined in § 6. We were

also able to use SIMD vectorization in the binary search part of the

algorithms, leading to additional 1.1× speedup.
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8.6 Subtleties of Higher-Order Structure
Subtleties of Higher-Order Structure One of the insights that

we gained with GMS is that graphs similar in terms of 𝑛,𝑚, spar-

sity𝑚/𝑛, and degree distributions, may have very different char-

acteristics in their higher-order structure. For example, a graph

of photo relations in Flickr and a Livemocha social network (see

Table 7 for details) are similar in the above properties, but the for-

mer has 9,578,965,096 4-cliques while the latter has only 4,359,646

4-cliques. This is because, while a in a social network 4-cliques

of friendships may be only relatively common, they should occur
very often in a network where photos are related if they share some
metadata (e.g., location). Thus, one should carefully select input
datasets to properly evaluate respective graph mining algorithms,

as seemingly similar graphs may have very different higher-order

characteristics, which may vastly impact performance and conclu-

sions when developing a new algorithm.

8.7 Analysis of Synthetic Graphs
We illustrate example results for synthetic graphs, see Figure 8a

(with BK-GMS-DGR). Using power-law Kronecker graphs enable

us to study the performance impact from varying the graph spar-

sity𝑚/𝑛 while fixing all other parameters. For very sparse graphs,

the cost of mining cliques is much lower than that of vertex reorder-

ing during preprocessing. However, as𝑚/𝑛 increases, reordering

begins to dominate. This is because Kronecker graphs in general

do not have large cliques, which makes the mining process finish

relatively fast, while reordering costs grow proportionally to𝑚/𝑛.

8.8 Machine Efficiency Analysis
We show example analysis of CPU utilization, using the PAPI in-

terface in GMS, see Figure 8b. The plots illustrate the flattening of

speedups with the increasing #threads, accompanied by the steady

growth of stalled CPU cycles (both total counts and ratios), showing

that maximal clique listing is memory bound [68, 89, 118, 221, 223].

8.9 Memory Consumption Analysis
We illustrate example memory consumption results in Figure 8c;

we compare the size of three GMS set-centric graph representa-

tions, showing both peak memory usage when constructing a rep-

resentation (bars) and sizes of ready representations (all in GB).

Interestingly, while the latter are similar (except for v-usa), peak

memory usage is visibly highest for RoaringSet. We also compare

to the representation used by Das et al. [79], it always comes with

the highest peak storage costs.

8.10 Algorithmic Throughput Analysis
The advantages of using algorithmic throughput can be seen by

comparing Figure 1 and 4. While plain runtimes illustrate which

algorithm is faster for which graph, the algorithmic throughput also

enables combining this outcome with the input graph structure. For
example, the GMS variants of BK have relatively lower benefits over

BK by Das et al. [79] whenever the input graph has a higher density
of maximal cliques. This motivates using the GMS BK especially for

very sparse graphs without large dense clusters. One can derive

analogous insights for any other patterns such a 𝑘-cliques.

8.11 GMS and Graph Processing Benchmarks
There is very little overlap with GMS and existing graph processing

benchmarks, see Section 1 and Table 1. The closest one is GBBS [83],

which supports the exact same variant of mining 𝑘-cliques. We

compare GBBS to GMS in Figure 9; we also consider the edge-based

very recent implementation by Danisch et al. [78]. GMS offers

consistent advantages for different graphs and large clique sizes.

8.12 GMS and Pattern Matching Frameworks
There is also little overlap between GMS and pattern matching

frameworks, cf. Table 1. While they support mining patterns, they

focus on patterns of fixed sizes (e.g., 𝑘-cliques). We compare GMS to

two very recent frameworks that, similarly to GMS, target shared-

memory parallelism, Peregrine [118] and RStream [210]. Peregrine

can only list 𝑘-cliques. It does not offer a native scheme for maximal

clique listing and we implement it by iterating over 𝑘-cliques of
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We also include Danisch’s algorithm (edge-centric) for additional reference. System:

Einstein (full parallelism).

different sizes (we consult the authors of Peregrine to find the best

scheme). RStream is only able to find 𝑘-cliques. Overall, GMS is

much faster in all considered schemes (10-100× over Peregrine and

more than 100× over RStream). This is because these systems focus

on programming abstractions, which improves programmability

but comes with performance overheads. GMS enables maximizing

performance of parallel algorithms targeting specific problems.

9 RELATEDWORK & DISCUSSION
We already exhaustively analyzed a large body of works related

to graph processing benchmarks [26, 32, 147] and graph pattern

matching frameworks, see Section 1 and Tables 1 and 2. General

graph processing is summarized in a recent overview [182]. In

general, GMS complements these works by delivering the first

benchmarking suite that specifically targets graph mining.

While in the current GMS versionwe focus on the parallel shared-

memory setting, GMS could be extended into multiple directions as

future work. This includes moving into distributed processing [102,

103] and incorporating high-performance techniques [95, 104, 205]

such as Remote Direct Memory Access [30, 33, 98, 99, 185, 187]

combinedwith using general high-performance networks that work

well with communication-intensive workloads [25, 31, 38, 85]. We

are also working on variants of graph mining algorithms in GMS

that harness the capabilities of the underlying hardware, such as

low-diameter on-chip networks [29, 105, 160], NUMA and focus

on data locality [187, 203], near- and in-memory processing [7, 8,

52, 112, 114, 134, 135, 163, 164, 170, 188–190], various architecture-

related compression techniques [171, 172], and others [81, 128].

One could incorporate various forms of recently proposed lossy

graph compression and summarization [34, 41, 144], and graph

neural networks [22, 215, 216].

10 CONCLUSION
We introduce GraphMineSuite (GMS), the first benchmarking suite

for graph mining algorithms. GMS offers an extensive benchmark
specification and taxonomy that distill more than 300 related works

and can aid in selecting appropriate comparison baselines. More-

over, GMS delivers a highly modular benchmarking platform, with

dozens of parallel implementations of key graph mining algorithms

and graph representations. Unlike frameworks for pattern match-
ing which focus on abstractions and programming models for ex-

pressing mining specific patterns, GMS simplifies designing high-

performance algorithms for solving specific graph mining problems
from awide graphmining area. Extending GMS towards distributed-

memory systems or dynamic workloads are interesting future lines

of work. Third, GMS’ concurrency analysis illustrates theoretical
tradeoffs between time, work, storage, and accuracy, of several rep-

resentative problems in graph mining; it can be used as a guide

when rapidly analyzing the scalability of a planned graph mining

scheme, or to obtain performance insights independent of imple-

mentation details . Finally, we show GMS’ potential by using it to

enhance state-of-the-art graphmining algorithms, leading to theoreti-
cal and empirical advancements in maximal clique listing (speedups

by >9× and better work-depth bounds over the fastest known Bron-
Kerbosch baseline), degeneracy reordering and core decomposition

(speedups by >2×), 𝑘-clique listing (speedups by up to 1.1× and

better bounds), and subgraph isomorphism (speedups by 2.5×).
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APPENDIX
We now provide extensions of several sections.

A DETAILS OF PROBLEMS AND
ALGORITHMS IN GRAPH MINING

We additionally provide more details of considered graph mining

problems and the associated algorithms.

• Maximal Cliques Listing For finding maximal cliques, we

use the established Bron-Kerbosch (BK) algorithm [56], a recursive

backtracking algorithm often used in practice, with well-known

pivoting and degeneracy optimizations [61, 91, 151, 207].

• 𝑘-Clique Listing GMS considers listing 𝑘-cliques. We select

a state-of-the-art algorithm by Danisch et al. [78]. The algorithm

is somewhat similar to Bron-Kerbosch in that it is also recursive

backtracking. The difference is that its work is polynomial. We also

separately consider Triangle Counting as it comes with a plethora

of specific studies [9, 184, 193].

• Dense Non-Clique Subgraph Discovery We also incorpo-

rate a problem of discovering dense non-clique subgraphs. Rele-
vant classes of subgraphs are quasi-cliques, 𝑘-cores, 𝑘-plexes, 𝑘d-

cliques, 𝑘-clubs, 𝑘-clans, dal𝑘s, dam𝑘s, d𝑘s, 𝑘-clique-stars, and oth-

ers [117, 136]. Here, we implemented a very recent algorithm for

listing 𝑘-clique-stars [117]; 𝑘-clique-stars are dense subgraphs that
combine the characteristics of cliques and stars (relaxing the restric-
tive nature of 𝑘-cliques) [117]. GMS also implements an exact and

an approximate algorithm for 𝑘-core decomposition [94].

• Subgraph Isomorphism Subgraph isomorphism (SI) is an

important NP-Complete problem, where one finds all embeddings

of a certain query graph 𝐻 in another target graph𝐺 . SI can be non-
induced and induced; we consider both. Consider a case where an
embedding of 𝐻 is found in 𝐺 , but there are some additional edges

in 𝐺 that connect some vertices that belong to this embedding. In

the non-induced variant, this situation is permitted, unlike in the

induced variant, where the found embedding cannot have such

additional edges. In GMS, we consider recent algorithms: VF2 [75]

and adapted Glasgow [155] for induced SI, and VF3-Light [59] and

TurboISO [108] for non-induced SI. Our selection covers different

approaches for solving SI: VF2 and VF3-Light represent backtrack-

ing as they descent from the well-known ULLMAN algorithm [209].

TurboISO uses a graph indexing as opposed to backtracking while

Glasgow incorporates implied constraints.

• Frequent Subgraph Mining We separately consider the Fre-

quent Subgraph Mining (FSM) problem [120], in which one finds

all subgraphs that occur more often than a specified threshold. An

FSM algorithm consists of (1) a strategy for exploring the tree of

candidate subgraphs, and (2) a subroutine where one checks if a

candidate is included in the processed graph. (2) usually solves the

subgraph isomorphism problem, covered above. (1) uses either a

BFS-based or a DFS-based exploration strategy.

• Vertex Similarity Vertex similarity measures can be used on

their own, for example in graph database queries [179], or as a build-

ing block of more complex algorithms such as clustering [119]. We

consider seven measures: Jaccard, Overlap, Adamic Adar, Resource

Allocation, Common Neighbors, Total Neighbors, and Preferential

Attachment measures [137, 179]. All these measures associate (in

different ways) the degree of similarity between 𝑣 and 𝑢 with the

number of common neighbors of vertices 𝑣 and 𝑢.

•LinkPrediction Here, one is interested in developing schemes

for predicting whether two non-adjacent vertices can become con-

nected in the future. There exist many schemes for such prediction

that are based on variations of vertex similarity [10, 142, 146, 202].

We provide them in GMS, as well as a simple algorithm for assess-

ing the accuracy of a specific link prediction scheme [211], which

assesses how well a given prediction scheme works.

• Clustering and Community Detection We consider graph

clustering and community detection, a widely studied problem. We

pick Jarvis-Patrick clustering (JP) [119], a scheme that uses similar-

ity of two vertices to determine whether these two vertices are in

the same cluster. Moreover, we consider Label Propagation [175]

and the Louvainmethod [46], two establishedmethods for detecting

communities that, respectively, use the notions of label dominance
and modularity in assigning vertices to communities.

• Approximate Degeneracy Ordering We also consider an

easily parallelizable algorithm to compute an approximate degener-
acy order (the algorithm has 𝑂 (log𝑛) iterations for any constant

𝜀 > 0 and has an approximation ratio of 2 + 𝜀 [24]). The algorithm
is based on a streaming scheme for large graphs [94] and uses set

cardinality and difference. The derived degeneracy order can be

directly used to compute the 𝑘-core of𝐺 (a maximal connected sub-

graph of 𝐺 whose all vertices have degree at least 𝑘). This is done

by iterating over vertices in the degeneracy order and removing all

vertices with out-degree less than 𝑘 (in the oriented graph).

• Optimization Problems Third, we also consider some prob-

lems from a family of optimization problems, also deemed impor-

tant in the literature [5]. Here, we focus on graph coloring (GC),

considering several graph coloring algorithms that represent dif-

ferent approaches: Jones and Plassmann’s [123] and Hasenplaugh

et al.’s [110] heuristics based on appropriate vertex orderings and

vertex prioritization, Johansson’s [121] and Barenboim’s [17] ran-

domized palette-based heuristics that use conflict resolution, and

Elkin et al.’s [90] and sparse-dense decomposition [109] that are

examples of state-of-the-art distributed algorithms.

B NAVIGATING THE MAZE OF GRAPH
REPRESENTATIONS

The right data layout is one of key enablers of high performance.

For this, we now overview the most relevant graph representations

and compression schemes. We picture key designs in Figure 10.

B.1 Graph Representations
We consider several graph representations.

B.1.1 Adjacency List and Adjacency Array. AL is a very popular

representation that uses 𝑂 (𝑚 log𝑛 + 𝑛 log𝑚) space, with many im-

plementations and variants. AM uses𝑂 (𝑛2) space and is thus rarely
directly used. However, several interesting compression schemes

are based on AM, for example 𝑘2-trees or some succinct graphs [34].

B.1.2 CSR aka Adjacency Array. Compressed Sparse Row (CSR),

also referred to as Adjacency Array (AA), usually consists of 𝑛

arrays that contain neighborhoods of graph vertices. Each array

is usually sorted by vertex IDs. AA also contains a structure with
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Figure 10: An overview of models, representations, and compression schemes. The GMS logo indicates the ones provided in the current GMS platform. A recent
survey provides full details on all the representations [34]

offsets (or pointers) to each neighborhood array. AA is very popular

in processing engines for static graphs [40]. Due to its simplicity, it

offers very low latency of accesses. Moreover, its variants are used

in graph streaming settings [28], where edges and vertices may be

inserted or deleted over time.

B.1.3 Log(Graph). Log(Graph) [40] is a recently proposed variant

of AA, in which one separately compresses fine elements of the

representation (vertex IDs, edge weights, etc.) as well as coarse

parts, such as a whole offset array. The main compression method

in Log(Graph) is encoding each considered graph element using

a data structure that approaches the corresponding logarithmic stor-
age lower bounds while simultaneously enabling fast accesses. An
example such structure used in Log(Graph) are succinct bit vectors.

One Log(Graph) advantage is low-overhead decompression. Another
benefit is a tunable storage-performance tradeoff : one can choose to

compress more aggressively at the cost of more costly decompres-

sion, and vice versa. Third, Log(Graph) is modular: the user can

select which parts of AA are compressed.

B.2 Graph Compression Schemes
In a survey on lossless graph compression and space-efficient graph

representations [34], we illustrate that the majority of graph com-

pression methods fall into two major families of methods: relabel-

ings (permutations) and transformations.

One type of the considered compression schemes for adjacency

data are relabelings that permute vertex IDs. Different permuta-

tions enable more or less efficient compression of vertex IDs (e.g.,

when combining permutations with a Varint compression and gap

encoding [40]). Established examples use shingle ordering [70], re-

cursive bisection [43], degree minimizing [40], and Layered Label

Propagation [47].
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Algorithm AL (sorted) AM EL (unsorted) EL (sorted)

Node Iterator (TC) O
(
𝑛 +𝑚3/2

logΔ
)∗

O
(
𝑛 +𝑚3/2

)
O
(
𝑛 +𝑚3/2 (Δ + log𝑚)

)
O
(
𝑛 +𝑚5/2

)
Rank Merge (TC) O

(
𝑛 + 𝑛Δ +𝑚3/2

)
O
(
𝑛 + 𝑛Δ +𝑚3/2

)
O
(
𝑛 + 𝑛Δ +𝑚3/2

)
O
(
𝑛 + 𝑛Δ +𝑚3/2

)
BFS, top-down Θ(𝑛 +𝑚) Θ(𝑛 +𝑚) O (𝑛 log𝑚 +𝑚) O (𝑛𝑚 + 𝑛 +𝑚)
PageRank, pushing O

(
𝑛 +𝑚3/2

logΔ
)∗

O
(
𝑛 +𝑚3/2

)
O
(
𝑛 +𝑚3/2 (Δ + log𝑚)

)
O
(
𝑛 +𝑚5/2

)
𝐷–Stepping (SSSP) O

(
𝑛 +𝑚 + 𝐿

𝐷
+ 𝑛𝐷 +𝑚𝐷

)
O
(
𝑛2 + 𝐿

𝐷
+ 𝑛𝑛𝐷 +𝑚𝐷

)
O
(
𝑛𝑚 + 𝐿

𝐷
+ 𝑛𝐷 (log𝑚 + Δ) +𝑚𝐷

)
O
(
𝑛𝑚 +𝑚 + 𝐿

𝐷
+ 𝑛𝐷𝑚 +𝑚𝐷

)
Bellman-Ford (SSSP) O

(
𝑛2 + 𝑛𝑚

)
O
(
𝑛3

)
O(𝑛 + 𝑛𝑚) O (𝑛 + 𝑛𝑚)

Boruvka (MST) O(𝑚 log𝑛) O
(
𝑛2 log𝑛

)
O(𝑛𝑚 log𝑛 log𝑚) O

(
𝑛2𝑚

)
Boman (Graph Coloring) O(𝑛 +𝑚) O

(
𝑛2

)
O
(
𝑛2

)
O(𝑛 + 𝑛𝑚)

Betweenness Centrality O(𝑛𝑚) O
(
𝑛3

)
O(𝑛𝑚 log𝑚) O

(
𝑛𝑚2

)
Table 8: Time complexity of graph algorithms for different graph representations. “∗” indicates that the logΔ terms becomes Δ when the used AL representation
is unsorted.𝐷 is a parameter of the Delta–Stepping algorithm that controls the “bucket size” and thus the amount of parallelism (for𝐷 = 1 one obtains Dijkstra’s
algorithm while for 𝐷 = ∞ one obtains the Bellman-Ford algorithm). 𝐿 is the maximum length of a shortest path between any two vertices.

Graph query AL AM EL (unsorted) EL (sorted)

Iterate over all vertices Θ(𝑛) Θ(𝑛) Θ(𝑛) Θ(𝑛)
Iterate over all edges Θ(𝑛 +𝑚) Θ

(
𝑛2

)
Θ(𝑚) Θ(𝑚)

Iterate over a neighborhood Θ(Δ) Θ(𝑛) Θ(𝑚) Θ(log𝑚 + Δ)#
Check vertex’ degree Θ(𝑛)∗ Θ(𝑛)∗ Θ(𝑚)∗ Θ(log𝑚 + Δ)∗#
Check edge’s existence O(logΔ) O (1) O (𝑚) O (log𝑚)
Check edge’s weight O(1) O (𝑛) Θ(𝑚) Θ(log𝑚 + Δ)#

Table 9: Time complexity of graphqueries for different graph representations.
“∗” indicates that a given complexity can be reduced to O(1) with Θ(𝑚 + 𝑛)
preprocessing and 𝑛 auxiliary storage. “#” indicates that a given complexity
assumes that each edge (𝑢, 𝑣) is present twice in the edge list (both in𝑢’s and
in 𝑣’s neighborhoods), which requires double storage but does not increase
the preprocessing complexity.

Another type of compression schemes provided by GMS are

transformations that apply a certain function to the adjacency

data [40] after a relabeling is used. Here, in addition to the above-

mention Varint and gap encoding, GMS considers 𝑘2-trees [55],

run-length and reference encoding [40], and implementation of

certain schemes proposed in WebGraph [49].

B.3 Theoretical Analysis
We offer a brief theoretical analysis on the impact of different repre-

sentations on the performance of graph queries and algorithms. The

analysis for the former can be found in Table 9. For the latter, Table 8

provides time complexities of Triangle Counting (Node-Iterator and

Rank-Merge schemes [193]), Page Rank (pushing and pulling [26]),

BFS, Betweenness Centrality (Prountzos et al.’ algorithm [173]), Sin-

gle Source Shortest Paths (Δ-Stepping [156] and Bellman-Ford [21]),

Minimum Graph Coloring (Boman et al.’ algorithm [50]), and Mini-

mum Spanning Tree (Boruvka’s algorithm [53]).

C ADDITIONAL RESULTS
Figure 11 shows additional results for the performance of various

Bron-Kerbosch variants, when measured in the mined cliques per

time unit.
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Figure 11: Additional data from performance analysis related to mining maximal cliques; the Y axis plots the number of maximal cliques mined per time unit.
The naming of the schemes is the same as in the main body of the document, with the following exceptions: “BK-GMS-SG” indicates the subgraph optimization (“BK-GMS-ADG-S”),

“BK-GMS-DG” indicates the degeneracy ordering (“BK-GMS-DGR”), and “BK-GMS-DE” as well as “BK-TBB-DE” are the degree orderings in GMS and TBB, respectively.
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