
Energy-Optimal and Low-Depth Algorithmic
Primitives for Spatial Dataflow Architectures

Lukas Gianinazzi, Tal Ben-Nun, Maciej Besta, Saleh Ashkboos,
Yves Baumann, Piotr Luczynski, and Torsten Hoefler

ETH Zurich, Switzerland
Emails: {lukas.gianinazzi, tal.bennun, maciej.besta, saleh.ashkboos, yves.baumann, piotr.luczynski, hhtor}@inf.ethz.ch

Abstract—Spatial dataflow architectures, characterized by
large arrays of processing elements communicating over a spa-
tially localized on-chip network, offer unprecedented parallelism
but introduce unique challenges for algorithm design. Unlike
traditional shared-memory parallel systems, these architectures
rely on local interconnects, where the distance between elements
directly impacts communication efficiency. This necessitates new
algorithmic approaches that balance parallelism and spatial
locality. Fundamental operations like Parallel Scans, Rank Se-
lection, and Sorting, which form the backbone of many algo-
rithms—including those in graph neural networks and scientific
computing—must be carefully adapted to minimize communi-
cation overhead. To address these challenges, we adopt the
Spatial Computer Model, which quantifies communication costs
through two key metrics: energy, representing the total distance
traveled by messages (a proxy for network load), and depth,
indicating the largest chain of dependent messages (critical for
parallelism). In this work, we present the first energy-optimal
algorithms for parallel scans, rank selection, and sorting within
this model, achieving poly-logarithmic depth while maintaining
tight upper and lower bounds on energy and distance. We
demonstrate the applicability of these algorithms to the critical
problem of sparse matrix-vector multiplication, which is central
to scientific workloads and machine learning models. Our results
lay the groundwork for designing energy-efficient and scalable
algorithms on spatial dataflow architectures, highlighting the
potential for further exploration of sparse algorithms and neural
networks optimized for these systems.

Index Terms—Sorting and searching, Routing and layout,
Computations on matrices

I. INTRODUCTION

Spatial dataflow architectures have emerged as power-
ful platforms for both data science and traditional high-
performance computing (HPC) workloads due to their high
throughput and parallelism [1], [2], [3], [4], [5], [6], [7], [8],
[9]. These architectures, exemplified by cutting-edge systems
like the Cerebras Wafer-Scale Engine [10], feature up to
hundreds of thousands of parallel processing elements on a
single chip. Each processing element is equipped with its
own fast, local memory. Rather than using global memory,
processing elements communicate through an on-chip mesh
network, with communication costs varying based on the
distance. While these innovations eliminate the shared memory
bottleneck and enable high memory bandwidth, they also
introduce unique challenges for algorithm design, especially
in managing communication across the chip.

High throughput is only achievable on a spatial dataflow
architecture when an algorithm exploits the problem’s spatial

locality, meaning communication primarily occurs between
nearby processing elements on the chip. However, this lo-
cality should not come at the cost of reducing parallelism,
which would reduce the scalability of the algorithms. Hence,
traditional algorithms must be adapted to balance spatial lo-
cality and parallelism to operate efficiently on spatial dataflow
architectures [11], [12]. The cost of communication between
processing elements, which increases with physical distance,
must be carefully managed to avoid performance bottlenecks.
This requires developing and adapting key algorithmic prim-
itives that minimize communication distance and leverage
parallelism, making them suitable for the unique properties
of spatial dataflow architectures.

Many complex algorithms rely on a small set of funda-
mental primitives, such as parallel scans (prefix sums), rank
selection, and sorting. These operations form the backbone
of numerous algorithms in both data science and machine
learning. Specifically, they are key to efficient sparse matrix-
vector multiplication (SpMV), a fundamental operation in
scientific workloads [13], [14] and graph algorithms [15].
Moreover, they are integral to the construction of advanced
neural networks, including graph neural networks (GNNs)
with sort pooling layers [16], which rely on sorting as a
critical operation for feature extraction and learning. Given
the broad applicability of these primitives, it is essential to
understand how to optimize their execution on spatial dataflow
architectures. Traditional algorithms either ignore spatial lo-
cality because they assume all processors are symmetric with
respect to each other [17], [18], [19] or provide insufficient
parallelism [20], [21], [22], [23], showcasing a gap in the
understanding of highly parallel, but spatially local computa-
tion primitives. Efficient algorithm designs for these operations
will not only enhance individual algorithm performance but
also increase the range of workloads these architectures can
support, paving the way for more advanced algorithms and
neural network models.

A. Methodology

We use the Spatial Computer Model [24], [11], a ma-
chine abstraction that enables algorithm designers to focus
on optimizing for spatial locality and parallelism, rather than
specific hardware details. It considers an unbounded number of
processors with constant-sized memory organized in a Carte-
sian 2-dimensional grid. While the grid allows unrestricted

communication between processors, it imposes costs based on
the distance between them. Specifically, sending a message
from processor pi,j in the grid to processor px,y in the grid
has distance |x− i|+ |y− j|. The largest total distance of any
chain of dependent messages is the distance of an algorithm,
which measures the latency incurred by sending the messages
along wires.

The energy of a computation is the sum of the distance
cost of the sent messages, and it measures the total load on
the communication network. The longest chain of messages
that consecutively depend on each other is the depth of the
computation. A low depth indicates that the algorithm has
many independent operations, allowing for a high degree of
parallelism. In algorithm design, optimizing for depth and
energy often involves trade-offs [11]. While minimizing depth
allows for faster execution due to high parallelism, managing
energy ensures efficient resource usage.

B. Limitations of State-of-the-Art Approaches

The problems of parallel scans, rank selection, and sorting
have been widely studied across various architectures and
models of computation [25], [26], [27]. Notably, sorting net-
works [28], [29], [30], [31] have been explored as a general-
purpose approach for parallel sorting, offering a highly parallel
solution that can work across different systems. In addition,
significant work has focused on designing efficient parallel
algorithms for shared-memory architectures [32], [33], [34],
leveraging the availability of fast, concurrent access to a
unified memory space. Other efforts have concentrated on
distributed algorithms [35], [36], where processors communi-
cate over message-passing protocols, and mesh-connected net-
works [20], [37], where communication happens between pro-
cessors organized in a grid-like structure. Despite this wealth
of research, none of these prior models or approaches directly
address the unique challenges of spatial dataflow architectures.
Specifically, unlike spatial dataflow architectures, these models
do not need to balance spatial locality—quantified in our
model as energy and distance—with parallelism, measured
by depth. In spatial architectures, both factors are critical for
achieving peak performance.

Previous work targeting the Spatial Computer Model has
largely focused on basic collective communication primi-
tives [11] such as reductions, broadcasts, and efficient tree
layouts, along with operations performed on these trees [24].
While these primitives are foundational, they are not suf-
ficient for handling more complex algorithms that operate
on graphs, sparse matrices, or other irregular data structures.
These problems introduce a higher level of complexity due
to their irrecular access patterns, and existing solutions in the
spatial model do not extend to these domains. Consequently,
the question of which complex algorithms can be made both
energy-efficient and low depth within this model has remained
open until now.

TABLE I: Summary of our Spatial Computer Model
bounds. We provide tight energy upper and lower bounds
for the computational primitives of scan, selection, and
sorting, from which we derive results for sparse matrix-
vector multiplication (SpMV).

Problem Energy Depth Distance

Parallel Scan §IV Θ(n) O(logn) Θ(
√
n)

Sorting §V Θ
(
n

3
2

)
O(log3 n) Θ(

√
n)

Rank Selection⋆ §VI Θ(n) O(log2 n) Θ(
√
n)

SpMV §VIII Θ
(
n

3
2

)
O(log3 n) Θ(

√
n)

(⋆) randomized algorithm; bounds hold with high probability
n input size, grid size

√
n×

√
n

C. Key Insights and Contributions

In this paper, we present the first energy- and distance-
optimal algorithms with poly-logarithmic depth for three fun-
damental operations: parallel scans, rank selection, and sorting.
These results establish new upper and lower bounds on the
computational complexity of these operations in the Spatial
Computer Model. An overview of the specific energy, depth,
and distance bounds we achieve for each algorithm can be
found in Table I. We provide a lower bound on the energy
of the permutation operation, which states that there are
permutations that take Ω(n

3
2) energy. Because sorting can be

used to implement any permutation, this result implies that our
sorting algorithm is energy-optimal.

Sorting allows us to simulate any Parallel Random Access
Machine (PRAM) algorithm on the Spatial Computer Model
(see Section VII). While this simulation typically incurs addi-
tional energy, distance, and depth costs, it provides a conve-
nient framework for transferring well-established algorithms
into the spatial context without the need for detailed re-
implementation. Although PRAM simulations generally do not
yield optimal algorithms in spatial dataflow architectures due
to the overhead of sorting the simulated shared memory, they
are particularly useful for subroutines that do not dominate
overall runtime and provide upper bounds quickly.

Our algorithmic tools serve as building blocks for a broader
class of algorithms. To illustrate their utility, we demonstrate
how these primitives can be combined to form more complex
algorithms for the case study of sparse matrix multiplication,
which is central to many applications in scientific computing
and machine learning. We demonstrate how to apply our
PRAM simulation results, and how a careful use of our
algorithmic primitives can improve on the simulation result.
The modularity of these building blocks makes them valuable
for tackling a wide range of computational problems on spatial
dataflow architectures.

D. Limitations of the Proposed Approach

Our approach assumes that each processing element has
O(1) memory, a reasonable assumption for large systems
where the total memory far exceeds that of individual ele-
ments. A promising direction for future research is to general-
ize our algorithms for cases where local memory constitutes a
significant fraction of total memory, which would be beneficial
for systems with fewer processing elements. In this work,
we emphasize parallel scalability and tailor our algorithms
to systems like the Cerebras WSE-2 [10], which features
hundreds of thousands of processing elements.

II. RELATED WORK

A. Spatial Algorithms

Tree Algorithms. Previous work has investigated both
theoretical and experimental aspects of the Spatial Computer
Model. Baumann et al. [38] introduce low-depth, linear-energy
algorithms on trees, including treefix sums (a generalization
of parallel scans) and lowest common ancestor computations.
Their algorithms use a spatially optimized tree layout, enabling
neighboring nodes to exchange information with constant
energy cost on average. While their treefix sum algorithm
supports parallel scans, it requires Θ(n log n) energy, which
is not energy-optimal. Our results reduce the energy cost by
a factor of Θ(log n) for the case where the tree is a path.

Communication Collectives. Luczynski et al. [11] present
several algorithms for broadcast, reduce, and all-reduce com-
munication collectives, comparing theoretical bounds from
the Spatial Computer Model with experimental results on
the Cerebras WSE-2, a wafer-scale chip with approximately
850,000 processing elements [10]. Their findings reveal a
trade-off between low-depth and low-energy algorithms, with
low-depth algorithms showing superior performance given
a larger number of processing elements. Moreover, they
demonstrate that a key advantage of low-depth algorithms
is reducing data movement between compute elements and
network routers on the chip, which adds significant overhead
in practice. Moreover, we introduce a parallel scan as a new
spatial communication collective and present a logarithmic
depth broadcast and reduce with optimal O(n) energy without
the need for multicasting–a log n improvement.

B. Sorting, Scan, and Selection in Other Models

Sorting Networks. Some of the earliest sorting algorithms
were sorting networks [28], [29], [30], [31], [39]. Their fixed
communication patterns make them suitable for hardware im-
plementation. For dataflow architectures, these data-oblivious
algorithms are advantageous, as their routing patterns depend
only on input size. In this paper, we demonstrate how sorting
networks can be mapped onto a spatial dataflow architecture,
achieving low-depth execution and spatial locality. However,
this approach is energy-inefficient because sorting networks
typically operate on a one-dimensional array, failing to lever-
age the two-dimensional nature of spatial architectures.

Fixed-Connection Network Model. Fixed-connection net-
work models [40], [41] study computation on specific commu-
nication topologies, including tori, hypercubes, and meshes.
Mesh-connected computers [20], [21], [22], [23] are particu-
larly relevant for our work because they optimize for spatial
locality. Any algorithm on a mesh network can be adapted to
the Spatial Computer Model, where an algorithm requiring K
rounds on a

√
n ×

√
n mesh network incurs O(Kn) energy

with depth K and distance O(K). However, many problems
such as sorting cannot be solved in sub-polynomial rounds on
a mesh-network. In particular, the optimal sorting algorithm
takes Θ(

√
n) rounds [42], resulitng in Θ(

√
n) depth. We

improve on this significantly, reducing the depth to poly-
logarithmic while maintaining optimal energy and distance.

Work-Depth/PRAM. The work-depth model models com-
putation as a directed acyclic graph and counts the total
number of operations (work) and the length of the critical path
(depth). This model is closely related to the PRAM model [17],
which assumes a single shared memory with uniform cost
random access. An algorithm with work W and depth D takes
O(W/p+D) time on p PRAM processors [43]. Optimal par-
allel sorting takes O(log2 n) time with O(n/ log n) processors
on an exclusive-write exclusive-read machine [44]. Executing
such an algorithm would lead to sub-optimal energy and
distance (see Section VII). Similarly, while selection and scan-
ning takes O(log n) time using O(n/ log n) processors [45],
[17], simulating these algorithms would require Ω(n

3
2) energy

– a polynomial factor worse than our results. In summary,
PRAM algorithms, designed for random access memory with
no consideration for spatial locality, are highly inefficient for
spatial dataflow architectures, resulting in significantly higher
energy consumption and distance costs.

BSP. The bulk-synchronous parallel model [19] (BSP), op-
erates in synchronous rounds, or supersteps, where processors
can exchange arbitrarily large messages. The model aims to
minimize the number of rounds, communication volume, and
computation time. Comunication costs are uniform between
processors. BSP is well-suited for coarse-grained parallelism,
where the number of processors is much smaller than the input
size, and each processor has a large local memory—common
in large clusters. While efficient sorting, selection, and scan
algorithms have been developed for this model [35], [36], [46],
they are ill-suited to our setting. In spatial dataflow archi-
tectures, execution is asynchronous, memory per processing
element is limited, and communication costs depend heavily
on the spatial proximity of processors. As a result, BSP-based
algorithms fail to effectively utilize these architectures.

III. PRELIMINARIES

We introduce some preliminaries that we use throughout.
Spatial Computer Notation. Initially, an input of size n

is distributed in some predefined format on an h × w sized
processor subgrid with n = h ·w. We refer to the processor at
coordinate (i, j) as processor pi,j . For simplicity, we assume
w.l.o.g. that n is a power of 4.

Z-Order Curve. As observed in previous work [24],
storing arrays according to a space-filling curve’s traversal
of the grid enables improving the spatial locality of certain
parallel algorithms. The Z-Order curve (sometimes called
Morton space filling curve [47], [48]) is one such traversal of a
grid. We can define it recursively: Traverse the four quadrants
of the grid in order, visiting the top two quadrants first, left
to right, then the bottom two quadrants, left to right.

Observation 1. Sending a message along each edge of a Z-
Order curve of a

√
n×

√
n subgrid takes O(n) energy [11].

High Probability. A bound f(n) ∈ O(g(n)) holds with
high probability (w.h.p.), if for any constant d, there exist
constants n0 > 0 and c > 0 such that for all n ≥ n0,
f(n) ≤ cg(n) with probability at least 1− n−d.

IV. COMMUNICATION COLLECTIVES

We introduce our improved broadcast and reduce collectives
and then introduce our novel scan algorithm design.

A. Broadcast Without Multicasting

Consider the problem of broadcasting a value from the
processor p0,0 to all other processors in an h × w sub-grid
that contains p0,0. Let us first consider the square w × w
case (2D broadcast). We can solve the problem efficiently by
subdividing the grid into quadrants and proceeding recursively
on them: Send the value to the three processors in the top-left
corners of the other quadrants, then proceed recursively on
each quadrant. Next consider the h × 1 case (1D broadcast).
We build a binary broadcast tree, as follows. The root has
a child node directly next to it and a child node at an offset
(h−1)/2. Then, recursively build a binary tree for each child’s
subtree (each contains (h− 1)/2 elements).

Now, consider the general case, where we want to broadcast
on an h× w grid, where h ≥ w. First, do a 1D broadcast on
the first column. Then, subdivide the grid into square w × w
subgrids and run a 2D broadcast on each of them.

Lemma IV.1. Broadcast on an h×w subgrid takes O(hw+
h log h) energy, O(log n) depth, and O(w + h) distance.

Proof: The 1D broadcast takes O(h log h) energy [11].
The following ⌈ h

w ⌉ 2D broadcasts take O(w2) energy each:
Let E(w) be the energy required for the 2D broadcast on a
w × w subgrid. Then, we have that:

E(w) ≤

{
0 if w ≤ 1
3w
2 + 3 + 4E(w/2) otherwise,

which solves to O(w2). The depth is clearly O(logw +
log h) = O(log n). Finally, the distances of both the 1D and
2D broadcast form geometric series and solve to O(w + h).

B. Low-Depth Reduce

Given an associative and commutative operator ◦ and n
inputs A0, . . . , An−1 stored in arbitrary order on an h × w
subgrid containing the processor p0,0, a reduce computes A0 ◦

A1◦ . . .◦An−1 and leaves the result in the root processor p0,0.
To compute a reduce, we can use the reverse commmunication
pattern as the broadcast. Hence, the result follows:

Corollary IV.2. Reduce on an h× w subgrid takes O(hw +
h log h) energy, O(log n) depth, and O(w + h) distance.

On a square subgrid, previous O(log n)-depth Reduce took
Ω(n log n) energy [11], so this constitutes a Θ(log n) factor
energy improvement in the logarithmic-depth regime.

C. Parallel Scan

The parallel scan is a fundamental communication primi-
tive [49], [34]. In this section, we introduce an energy-optimal
scan algorithm with logarithmic depth, which will be applied
in Section VIII for sparse matrix-vector multiplication.

Consider an array A0, . . . , An−1 stored on a w × w grid.
Our goal is to compute the prefix sums

A0, A0 +A1, A0 +A1 +A2, . . . ,

n−1∑
i=0

Ai

where the i-th result
∑i

j=0 Aj is stored in the same location
as the i-th input. While this operation can be generalized for
any associative operator, we will focus on addition for clarity.

A naive 1D parallel prefix sum, implemented via a binary
tree over the array in row-major order, would incur Ω(n log n)
energy, similar to the energy cost of a binary tree broad-
cast [11]. A sequential prefix sum, while requiring only O(n)
energy, would suffer from Ω(n) depth. In contrast, our 2D scan
algorithm reduces the energy cost to Θ(n) while achieving
O(log n) depth by using a 4-ary summation tree structured
in Z-Order. This method fully takes advantage of the 2D
grid layout, featuring small communication distances while
achieving high parallelism.

Energy-Optimal Scan. Our scan algorithm consists of two
phases: an up-sweep followed by a down-sweep. During the
up-sweep phase, partial sums are computed across quadrants,
progressively aggregating results from smaller subgrids. The
down-sweep phase then uses these partial sums to compute the
final prefix sums. This process forms a 4-ary summation tree
over the grid, where the root corresponds to the entire subgrid
and its children represent the four quadrants, recursively.
By keeping communication primarily within quadrants, this
structure ensures efficient energy usage. The prefix sums are
computed in Z-Order, which optimizes the spatial locality
of the computation (see Section III for details). A visual
representation of the grid mapping is provided in Figure 1a.

a) Up-sweep: For each node in the quadrant tree, we
want to compute the sum of its leaf elements. If the current
subgrid contains a single processor, its element equals the
value at a leaf. Otherwise, proceed recursively.

• Recurse over all quadrants to obtain the sum of the
element of the children.

• Sum those values, store the result in the i-th processor of
the current subgrid in Z-order, where i is the distance to
a leaf in the 4-ary summation tree.

(a) The up-sweep computes
partial sums along a 4-ary tree.
The root of a height i subtree
is in the i-th node in Z-Order
of the subtree’s quadrant.

(b) The down-sweep computes
prefix sums over the values
from the up-sweep. It sends
these prefix sums to the quad-
rants recursively.

Fig. 1: The energy-optimal scan operates recursively in Z-
order. It first runs an up-sweep, followed by a down-sweep.

b) Down-sweep: Now, we use the values from the up-
sweep to compute the prefix sum. The algorithm again recur-
sively considers the subgrid’s quadrants. At each step, a value
x gets passed down from above. For the first invocation, x = 0.
This values x is added to all values in the current quadrant to
account for values that occur outside the current subgrid.

If the current subgrid has size 1, add x to the value
of A in the subgrid’s only processor. Otherwise, proceed
recursively. Consider the four quadrants in the current sub-
grid, S0, S1, S2, S3 in Z-order and their respective values
s0, s1, s2, s3 that were computed during the up-sweep. The
value that gets passed down to quadrant Si is x +

∑i−1
j=0 sj .

These values are passed down to the top left processor of each
subgrid. Figure 1b illustrates one step of the down-sweep.

Lemma IV.3. A scan on an array of n elements in Z-order
takes O(n) energy, O(log n) depth, and O(

√
n) distance.

Proof: The energy equals that of a Z-order curve up to
constant factors. In the up-sweep, each processor stores at
most 2 values of the summation tree. Because of the recursive
construction, the distance forms a geometric series.

Segmented Scan. To operate efficiently on multiple con-
secutively stored arrays, we consider segmented scans. The
input array is partitioned into consecutive segments. The result
of a segmented scan is the same as executing a scan on
each segment. For any associative operator, we can define
a segmented associative operator that has the logic of the
segments built-in [17]. Hence, we can use the same algorithm
for a segmented scan.

V. SORTING

We present a low-depth, energy-optimal sorting algorithm
based on mergesort, tailored for spatial dataflow architectures.
The primary challenge in this approach is designing a spatially
local, yet low-depth, merge subroutine to minimize commu-
nication distances while maintaining logarithmic depth. Our
energy-optimal mergesort improves significantly on the energy
cost of bitonic sorting networks, reducing the overall energy
consumption by a factor of O(log n).

16 8 4 2

(a) 1D Bitonic Merge

16=4x4 8=2x4

4=1x4 2=1x2

(b) 2D Bitonic Merge

Fig. 2: Bitonic Merge network in 1D and 2D layout. In 2D,
the recursion first splits into fewer columns (4x4 - 2x4 - 1x4),
then fewer rows (1x2). Because the recursion does not reduce
both rows and columns simultaneously, 2D Bitonic Mergesort
is suboptimal in terms of energy.

A. Lower Bound

It is easy to prove a non-linear lower bound on the energy
to permute (and hence sort) the input.

Lemma V.1. Permuting h×w elements on an h×w subgrid
takes Ω(max(w, h)2 ·min(w, h)) energy.

Proof: Assume w.l.o.g. that h > w. Otherwise, the
situation is transposed. Consider the permutation that reverses
the order in which elements appear in a row-wise layout. The
elements in the first h/3 rows need to be sent to one of the
last h/3 rows, which takes at least h/3 energy per element
(of which there are hw/3).

The lowest permutation cost is obtained when w = h. Since
permutation reduces to sorting, the lower bound follows:

Corollary V.2. Sorting n elements takes Ω(n
3
2) energy.

By the permutation lower bound, the matching upper bound
can only be obtained when the input is contained in a h× w
subgrid where w = Θ(h). Hence, we will focus on the case
where w = h. We begin by analysing the energy of a sorting
network in our model, which we show to be sub-optimal. Then,
we present an energy-optimal 2D Mergesort algorithm, which
has O(log3 n) depth and O(n3/2) energy on a

√
n×

√
n grid.

B. Sorting Networks

Sorting networks are data-oblivious (and stable) sorting
algorithms of oftentimes low depth [30], [28], [29], [31] .
For each time step, they define a set of pairs of indices to
compare (and swap if necessary). Each index into the array is
thought of as a ”wire”. In each step, a wire can be compared
with at most one other wire. A natural idea is to map a sorting
network to our processor grid: each wire in the sorting network
is assigned to a processor. For example, we can assign wires
to processors in row-major order. Interestingly, this approach
does not easily lead to energy-optimal sorting algorithms. We
present the results for Bitonic Sort [30].

The Bitonic Sort is a simple network with O(log2 n) depth
and O(n log2 n) comparisons. As it is defined recursively on

halves of its input, it exhibits some degree of spatial locality.
A Bitonic Sort makes use of a Bitonic Merge network, which
can be defined recursively: For an input of size n, compare
and swap each wire i with index less than n/2 with wire i+
n/2. Then, recursively merge both halves. See Figure 2 for an
illustration of a 4×4 Bitonic Merge with wires mapped to the
compute grid in row-major order. A Bitonic Sort recursively
invokes itself on both halves of its input, then invokes a Bitonic
Merge on the input. We begin with the analysis of the recursive
Bitonic Merge.

Lemma V.3. On an h × w subgrid, Bitonic Merge takes
Θ(h2w+w2h) energy, Θ(log n) depth, and Θ(w+h) distance.

Proof: We split the energy cost into two parts: (1) when
there is more than one row left; (2) when there is a single
row left. When there are h > 1 rows left, the network sends
Θ(w ·h) messages across a distance of h/2. Hence, the energy
E1(h) for this part is E1(h) = Θ(h2w) + 2E1(h/2), which
solves to Θ(h2w). When there is a single row left of length
w, the network sends Θ(w) messages across a distance of
Θ(w). Hence, the energy E2(w) for this part is E2(w) =
Θ(w2)+2E2(w/2), which is in Θ(w2). The algorithm reaches
the situation h times, so the total cost of this part is O(hw2).
The distance is a geometric series.

Next, we describe and analyze the cost of the bitonic sorting
network. Because the Bitonic Sort has a 1D recursive pattern
that first reduces the number of rows, and only then the number
of columns, it has to pay the energy of the Bitonic Merge a
logarithmic number of times in one dimension, leading to the
following bound:

Lemma V.4. On an h×w subgrid, Bitonic Sort takes Θ(h2w+
w2h log h) energy, Θ(log2 n) depth, and Θ(h + w log h)
distance.

Proof: We again divide the energy cost into the part where
there is more than one row and the part when there is a single
row left. The energy E1(h) when there are h > 1 rows left is

E1(h) ≤ O(h2w + w2h) + 2E(h/2) if h > 1.

We see that E1(h) = O(h2w + w2h log h). When there is a
single row left of length w, the energy E2(w) for this part is

E2(w) ≤ O(w2) + 2E(w/2) ,

which solves to O(w2). This cost occurs h times.
For the distance, observe that as long as there are is more than
one row, the cost is O(w+h). Because w stays the same while
there is more than one row, the distance is O(w log h+h).

Discussion. In conclusion, Bitonic Sort takes O(n
3
2 log n)

energy to sort n numbers, a logarithmic factor away from
optimal. Note that the sub-optimality is not because of the
suboptimal number of comparisons performed by the bitonic
sorting network, but instead because the network eventually
turns into a 1D algorithm (when the recursion becomes smaller
than a single row). Moreover, Bitonic Sort is also not distance
optimal, as it has Θ(

√
n log n) distance. We now present an

energy and distance optimal algorithm.

C. Energy-Optimal Sorting

We design a spatial energy-optimal variant of Merge-
sort [50], [51], [52]. On a high level, the 2D Mergesort
works similarly to traditional Mergesort. However, instead of
recursing on two halves of the array, we recurse on the four
sub-quadrants:

• Recursively sort the four quadrants of the subgrid.
• Merge the two top quadrants
• Merge the two bottom quadrants
• Merge the results of the two previous merges

The challenge lies in an energy-efficient implementation of the
Merge subroutine, that we present in the rest of this subsection.
Our merging subrouting relies on a naive sorting routine (All-
Pairs Sort), which we discuss next.

a) All-Pairs Sort: A simple idea for a low-depth sorting
algorithm is to compare every element with every other
element. This can be done by using our efficient broadcast and
reduce patterns. The implementation “explodes” the computa-
tion onto a larger subgrid. This leads to low depth. However,
because the computation grid has a larger diameter, the energy
cost increases to more than quadratic.

1) Subdivide an n × n subgrid into n subgrids Γi of size√
n×

√
n each. Scatter the elements of A such that Ai

is sent to the first processor in subgrid Γi, for each i.
2) Within each subgrid Γi, broadcast the element Ai.
3) Copy the array A to each grid Γi by using the same

communication pattern as for the 2D broadcast (by
treating the array A and the subgrids Γi as units).

4) Now, each processor compares its two elements.
5) Each subgrid Γi performs a reduction to compute the

rank of element Ai in the sorted sequence. Gather these
ranks.

Lemma V.5. All-Pairs Sort of n elements takes O(n5/2)
energy, O(log n) depth, and O(n) distance.

Proof: Scattering the n elements over a distance of at
most O(n) takes O(n2) energy. Let E(k) be the energy of
the broadcast when k · k subgrids remain. Then, we have the
recurrence

E(k) ≤

{
O(n) if k ≤ 1 ;
n3/2k + 4E(k/2) otherwise,

which is in O(n3/2k2). As initially, k =
√
n, we get that

the energy is O(n5/2). Computing the reductions takes O(n2)
energy and gathering these ranks takes O(n2) energy. The
depth is bottlenecked by the broadcasts. Finally, the distance
is bottlenecked by scattering the elements in the n×n subgrid.

b) Merging Two Sorted Arrays: The challenging part
of our merging algorithm is an energy-efficient and low-
depth merging subroutine. We cannot use classical approaches
because they do not lead to balanced recursive cases (which
is needed to organize them into square subgrids). Moreover,
using a binary search as a subroutine leads to a sub-optimal
distance. Consider two arrays A and B containing nA and nB

(a) (b)

(c) (d)

Fig. 3: (a-c) The 2D merge recursively splits the two sorted
arrays (colored in black and grey) by the encircled rank n/4,
n/2 and 3

4n elements into quadrants. (d) Finally, it permutes
the array from Z-Order into row-major order.

sorted numbers in row-major order. The goal is to construct
an array C that contains the n = nA +nB elements of A and
B in sorted row-major order.

At any point in the recursion, the algorithm operates on
a square subgrid Γ. The larger of the two current subarrays
A and B is stored in a square subgrid Γ′ ⊆ Γ, while the
other array is stored in row-major order filling up the rest of
the subgrid Γ, in a “mirrored L” shape. See Figure 3 for an
example. The idea of the algorithm is as follows.

1) Let A∥B be the concatenation of A and B. Split A and
B by the rank n/4, rank n/2 and rank 3n/4 elements
of A∥B into 4 subarrays each.

2) Reorganize the resulting subarrays into the four quad-
rants, such that the first quadrant contains the n/4
smallest elements of A∥B, and so on.

3) Recursively merge each quadrant.
4) After finishing the recursion, the array is sorted in Z-

Order. Hence, permute the array to row-major order.

c) Rank Selection in Two Sorted Arrays: To implement
the merge, we need to find the rank k element of A∥B (in
particular for k = n/4, n/2, 3n/4), known as a multiselection
problem [53]. The idea is to quickly rank a small subset of
the elements using All-Pairs Sort and determine much smaller
subarrays of A and B that contain the rank-k element.

1) Gather every ⌊
√
n⌋-th element of A and B into a

sample S. Specifically, select from A the elements at
indices i⌊

√
n⌋ for i in the range 0, . . . , ⌊nA/⌊

√
n⌋⌋ and

similarly for B.
2) Sort the sample S with an All-Pairs Sort.
3) Let l = ⌊ k−1

⌊
√
n⌋⌋.

4) Find Sl, the l-th ranked element in S. Using binary
search, locate its predecessors Aa in array A and Bb in
array B. If no predecessor exists, use the first element
of the respective array.

5) Narrow the search to the two subarrays
Aa, . . . Amin(nA,a+2⌊

√
n⌋) and Bb . . . Bmin(nB ,b+2⌊

√
n⌋).

6) Within these narrowed subarrays, locate the rank-(k −
a− b) element using All-Pairs Sort.

Lemma V.6. Given two sorted arrays A and B, we can
determine the rank k element in O((nA + nB)

5/4) energy,
O(log n) depth, and O(

√
n) distance.

Proof: Energy, depth, and distance are bottlenecked by the
All-Pairs Sort of the sample S. Because S has O(

√
nA + nB)

elements, the result follows by Lemma V.5.
Next, we prove the correctness of the algorithm. Case 1:

l = 0. Then k is at most ⌊
√
n⌋. Hence, it must be contained

within the first
√
n elements of one of the two subarrays. Case

2: l > 0. Because we sample every ⌊
√
n⌋ element, the rank

of Sl in A||B is at most l⌊
√
n⌋ ≤ k− 1. Hence, by removing

elements smaller than sl we do not exclude the rank k element.
Moreover, the rank of sl in A||B is at least k − 1 − 2⌊

√
n⌋.

Since we always consider the next 2⌊
√
n⌋+1 ranked elements,

correctness follows.

We now bound the cost of the merging subroutine.

Lemma V.7. Merging two arrays A and B with nA and nB

elements located on adjacent square subgrids takes O((nA +
nB)

3/2) energy, O(log2(nA + nB)) depth, and O(
√
n) dis-

tance.

Proof: Let E(nA, nB) be the energy of merging arrays A
and B with nA and nB elements in total. Then, the energy in
each step of the recursion is O((nA+nB)

5/4) for determining
the splitting elements and O((nA+nB)

3/2) for performing the
necessary permutations. Each of the recursive calls operates on
four pairs of subarrays. We get the energy recurrence

E(nA, nB) ≤

(nB)

3
2 if nA = 0

(nA)
3
2 if nB = 0

O((nA + nB)
3/2) +

∑4
i=1 E(ni

A, n
i
B) else,

where ni
A+ni

B = (nA+nB)/4. Since the number of elements
remains constant when summed over all nodes in the same
level of the recursion, and the ‘diameter’ term

√
nA + nB

decreases geometrically in each level of the recursion (for
all recursive calls), the recurrence solves to E(nA, nB) ≤
O((nA + nB)

3/2).
Note that for the case where nA = nB , the energy to merge

the subarrays is O(n
3
2), the permutation bound.

Finally, we can bound the costs of 2D Mergesort:

Theorem V.8. 2D Mergesort takes O(n3/2) energy, O(log3 n)
depth, and O(

√
n) distance on a square subgrid.

Proof: By Lemma V.7 , the energy E(n) is

E(n) ≤

{
0 if n ≤ 1;
O(n

3
2) + 4E(n/4) else,

which solves to O(n
3
2).

Discussion. We introduced an energy-optimal 2D mergesort
algorithm tailored for spatial dataflow architectures. To handle
smaller portions of data, we employed an auxiliary sorting

algorithm with O(log n) depth, albeit with a higher energy
cost of O(n

5
2). Notably, the permutation lower bound is a

factor
√
n higher than the linear energy bounds for commu-

nication collectives such as scan and reduce, as well as tree
operations [38]. This reveals a polynomial separation between
energy consumption in the Spatial Computer Model and the
processor-time product in PRAM machines [17].

VI. RANK SELECTION

Selecting an element of a certain rank plays a crucial role in
nonparametric statistics [54]. We show that we can determine
the median of n elements, and more generally the rank-k
element with linear energy and poly-logarithmic depth. This
demonstrates a polynomial factor energy separation between
selection and sorting in the spatial model. We can assume
without loss of generality that k ≤ ⌈n/2⌉, as we can reverse
the order of the elements and select the rank n− k element.

The idea is similar to the deterministic ranking we used for
merging sorted subarrays. However, since we do not start with
a partially sorted array, we have to sample randomly. We create
a sample that is as large as possible, rank this sample, and use
the ranking of the sample to eliminate a polynomial fraction of
the input elements. Because it takes O(

√
n) energy to gather

an element in a subgrid, the largest sample we can gather in
O(n) energy contains O(

√
n) elements. The sampling idea is

similar to an idea by Reishuk [32].
Initially, all elements are marked as active. Elements are

gradually marked inactive until we find the rank-k element.
Let N be the current number of active elements. Choose a
constant c with c ≥ 3. Repeat the following until N ≤ c

√
n:

1) Create a sample S by including every active element
independently with probability cN−1/2.

2) Gather those elements in a square subgrid, using a scan
to assign each sampled element an index within the
subgrid and a broadcast to communicate the size of the
sample.

3) Choose two pivots. The first pivot is the element sr at
rank r = min(|S|, ckN−1/2 + c

2N
1/4

√
lnn) . If k ≥

1
2N

3/4
√
lnn, the second pivot is the element sl at rank

l = ckN−1/2 − c
2N

1/4
√
lnn . Otherwise, the second

pivot is the dummy element sl = −∞. Sort the sample
S using Bitonic Sort to determine sl and sr.

4) Broadcast sl and sr in the original subgrid.
5) Count the number of active elements N<l smaller than

sl and the number of active elements N>r larger than
sr with an all-reduce. If N<l ≥ k or N>r ≥ N − k,
sort the input using 2D Mergesort and return the rank k
element. Otherwise, set k = k −N<l and continue.

6) For each active element a, inactivate it if a < sl or
a > sr.

7) Count the number of remaining active elements N with
an all-reduce. If k > ⌈N/2⌉, set k = N − k and reverse
the order of the elements (logically, that is, by henceforth
flipping the result of the comparator).

Once the iteration terminates, gather the elements in a square
subgrid, sort them and return the rank k element.

Our goal is to show that O(1) iterations suffice. The idea
behind the energy efficiency proof is that the number of input
elements of rank at most k is highly concentrated around their
expectation. Hence, the probability that the true rank k element
is between the pivot elements sl and sr is high.

Lemma VI.1. The probability that N<l ≥ k or N>r ≥ N−k
is at most 2n−c/6.

Proof: Let K be the random variable denoting the number
of rank at most k elements of the input that are sampled.
Let δ = cN1/4

√
lnn

2E[K] . We first consider the case where k ≥
1
2N

3/4
√
lnn and there are two non-trivial pivots. Observe that

N<l ≥ k occurs when K > l and N>r ≥ N − k occurs when
K < r. Note that E[K] = ckN−1/2. Hence, it remains to
bound the probability that K deviates from its expectation by
more than c

2N
1/4

√
lnn. Note that 0 < δ ≤ 1. By a Chernoff

bound [55], we get

P
[
|K − E[K]| ≥ c

2
N1/4

√
lnn

]
= P [|K − E[K]| ≥ δ E[K]]

≤ 2e−δ2 E[k]/3

≤ 2e−
c2N1/2 lnn

12 E[K]

≤ 2n−c/6 .

For the case where k < 1
2N

3/4
√
lnn, we have that N<l =

0. Thus, we only need to bound P [K ≥ (1 + δ)E[k]]. Note
that δ > 1. We can conclude by another Chernoff bound [55]:

P [K ≥ (1 + δ)E[k]] ≤ eδ E[k]/3 < e−2N1/4

.

Next, we bound the size of the number of active elements
after one iteration. The idea is that it is unlikely that more
than the expected number of elements are between sl and sr.

Lemma VI.2. Let Nt be the number of active elements after
the t-th iteration, N0 = n. Given Nt = nt and any constant
0 < ϵ < 1, with probability at least 1 − e−cϵn

1/4
t

√
lnn/4, we

have that Nt+1 ≤ (1 + ϵ)n
3/4
t

√
lnn.

Proof: We define a binomially distributed random vari-
able X to bound the probability, as follows. Consider the rank
of sl within the array after the t-th iteration. Now consider the
next (1+ϵ)n

3/4
t

√
lnn subsequently ranked elements (after the

t iteration) in order. If an element is sampled in the (t+1)-th
iteration, it is counted as a success. Recall that this occurs with
probability cn

−1/2
t . The event that Nt+1 > (1 + ϵ)n

3/4
t

√
lnn

occurs exactly when X ≤ cn
1/4
t

√
lnn. Note that E[X] =

(1 + ϵ)cn
1/4
t

√
lnn. We bound the tail probability of X by a

Chernoff bound (for δ = ϵ
1+ϵ):

P [X ≤ cn
1/4
t

√
lnn] = P [X ≤ (1− δ)E[X]]

≤ e−δ2 E[X]/2

= e−
(ϵ
1+ϵ

)cn
1/4
t

√
lnn)

2

≤ e−
cϵ
4 n

1/4
t

√
lnn .

Theorem VI.3. Rank Selection takes O(n) energy, O(log2 n)
depth, and O(

√
n) distance with high probability in n. The

same bounds also hold in expectation.

Proof: It takes O(n) energy to send the O(
√
n) sampled

elements across the O(
√
n) diameter compute grid. Sorting

the sample takes O(n3/4 log n) = o(n) energy. The remaining
operations take O(n) energy using our communication prim-
itives. Hence, each iteration takes O(n) energy. The depth is
bottlenecked by the Bitonic Sort, which takes O(log2 n) depth.
The distance is O(

√
n) in each iteration. For all Nt larger

than a constant, by Lemma VI.2 we have that Nt+1 ≤ N
4/5
t

with high probability in n. Hence, the algorithm performs
a O(1) iterations. By Lemma VI.1, each of those iterations
resorts to sorting the whole input with probability at most
2n−c/6 ≤ 2n−1/2, which implies the expectation bounds.
Adjusting the constant c boost the probability of success to
1− n−d for any constant d.

VII. PRAM SIMULATION

Simulating PRAM algorithms in our spatial model offers
a convenient way to quickly derive upper bounds for various
problems. The spatial layout of processors allows us to map
PRAM computations to a 2D grid, where shared memory can
be emulated by a dedicated subgrid of processors, and PRAM
processors operate in another subgrid. By organizing memory
and computation in this way, we can efficiently simulate the
PRAM’s operations in the spatial model. For problems involv-
ing concurrent reads and writes, we can employ our energy-
optimal sorting and scan algorithms to manage concurrency.

A. EREW Simulation.

Let us start with the Exclusive Read Exclusive Write
(EREW) PRAM simulation. In each synchronous time step, an
EREW PRAM processor can read O(1) word-sized memory
cells, perform O(1) computation, and write to O(1) memory
cells. No two processors can write or read the same memory
cell in the same time step. By simulating the shared memory
as a square subgrid of processors and placing the PRAM
processors into a square subgrid (next to the memory), we
obtain a simulation result for EREW PRAM:

Lemma VII.1. Consider an algorithm A on an EREW PRAM
that uses m memory cells and runs in Tp time steps on p
processors. Simulating algorithm A takes O(p(

√
p+

√
m)Tp)

energy, O(Tp) depth, and O((
√
p+

√
m)Tp) distance.

Proof: Organize the PRAM processors on a
√
p × √

p
subgrid and the PRAM memory cell on a

√
m×

√
m subgrid

next to it. Each processor sends a message to each memory
cell to request it. Each memory cell that received a request
answers it with a message. The processors compute their result
and send the result back to the memory cell. Each of the Tp

simulated PRAM step takes O(1) depth, O(
√
p+

√
m) distance

and O(p(
√
p+

√
m)) energy.

B. CRCW Simulation.

In the Concurrent Read Concurrent Write (CRCW) PRAM
model, multiple processors can simultaneously access the same
memory cell for reading or writing. When several processors
attempt to write to the same cell, one of the writes arbitrarily
succeeds. In our spatial model, we simulate this concurrency
by using energy-optimal sorting to resolve both read and
write conflicts. Sorting ensures that concurrent read values
are broadcast efficiently, and only one write is applied to each
memory cell. However, it increases the simulation depth due to
additional sorting steps required to coordinate memory access.

Lemma VII.2. Consider an algorithm A on an CRCW PRAM
that uses m memory cells and runs in Tp time steps on p
processors. Simulating algorithm A takes O(p(

√
p+

√
m)Tp)

energy, O(Tp log
3 p) depth, and O((

√
p+

√
m)Tp) distance.

Proof: Index the PRAM processors and memory cells
with one-dimensional indexes. Organize the PRAM processors
on a

√
p × √

p subgrid indexed in Z-order and the PRAM
memory cells on a

√
m×

√
m subgrid indexed in row major

order (next to it). We show how to simulate a sub-step where
each processor reads at most one value from the simulated
global memory and writes at most one value from the simu-
lated global memory. To simulate a PRAM step, execute O(1)
such sub-steps.

Let us begin with the read step. If processor with index
i wants to read a value at cell k, it creates a tuple (i, k).
Then, these tuples are sorted according to the last component.
Each processor i > 0 inspects its tuple (i, k′) and the tuple
(i − 1, k′′) of processor i − 1. If k′ ̸= k′′ or i = 0, then this
processors reads the value at cell k by sending a message there
and waiting for the value. The processors perform a segmented
broadcast on the received values (with segments determined
by the processors that read the same cell). Finally, we need to
send the results back to the processors that initiated the read.
A processor j that got tuple (i, k) from the first sorting step
and received v from the segmented broadcast creates a tuple
(i, v). Sort these tuples by first component, interpreted as a
location in the Z-order curve of the processors (convert index
i to a 2D location on the grid). Now, each processor has read
a value from global memory.

The write step is similar. If processor with index i wants
to write a value v to cell k, it creates a tuple (v, i, k). Then,
these tuples are sorted according to the last component. Each
processor i > 0 inspects its tuple (v′, i, k′) and the tuple
(v′′, i − 1, k′′) of processor i − 1. If k′ ̸= k′′ or i = 0, then
this processors sends the value v′ to memory cell k′.

Each read/write step takes O(p
√
p) energy to sort the tuples,

and O(p) energy for the segmented broadcast. Since there are
at most 2p accesses to the simulated shared memory, each
taking O(

√
p +

√
m) energy, the total energy of one step is

O(p
√
p+p

√
m). The depth is bottlenecked by the depth of the

sorting, which is O(log3 n) for each of the Tp sequential steps.
The distance is O(

√
p +

√
m) for each of the Tp sequential

steps. Summing over the O(Tp) steps yields the result.

VIII. APPLICATIONS TO SPARSE COMPUTATIONS

Next, we demonstrate the utility of our algorithmic primi-
tives by applying them to sparse matrix-vector multiplication
(SpMV), a fundamental operation in many scientific and
machine learning applications. We show how SpMV can be
efficiently implemented on spatial dataflow architectures using
a combination of sorting and scanning primitives, achieving
the same energy, depth, and distance bounds as our optimized
sorting algorithm.

Let A be an n× n sparse matrix with m non-zero entries,
where m ≥ n, and let x be a vector of size n. We want to
compute the matrix-vector product Ax. The matrix is stored
in coordinate format (COO), where each non-zero entry is
represented as a triple (i, j, Ai,j). Initially, the matrix A is
distributed across a

√
m ×

√
m subgrid of processors, with

each processor holding a single arbitrary of those triples. The
vector x is in a

√
n ×

√
n subgrid of processors, with each

processor holding one entry of the vector x.
Lower Bound on Energy. To establish the optimality of our

algorithm, we provide a matching lower bound on the energy
required for SpMV for the case where m = Θ(n):

Lemma VIII.1. Sparse matrix-vector multiplication requires
at least Ω(n3/2) energy.

Proof: This result follows from the lower bound on per-
mutation energy (Lemma V.1). Since any permutation can be
represented as a matrix-vector multiplication by constructing
a corresponding permutation matrix, the energy bound for
permutations applies directly to SpMV.

PRAM Simulation Upper Bound. To establish an initial
upper bound, we apply a PRAM simulation of the sparse
matrix-vector multiplication algorithm. A PRAM algorithm
can compute the products Ai,jxj in parallel. Then, it forms
the sums

∑
i Ai,jxj using parallel sums. This CRCW PRAM

algorithm runs in O(log n) time using O(m/ log n) proces-
sors and O(m) memory cells. By applying Lemma VII.2,
this translates to O(m3/2) energy, O(log4 n) depth, and
O(

√
m log n) distance. While this bound is energy-optimal for

m = O(n), we can further reduce the distance and depth by
a logarithmic factor by applying our optimized primitives.

Low-Depth SpMV Algorithm. Our improved SpMV algo-
rithm proceeds by sorting and scanning over the matrix and
vector entries to compute the product with lower depth and
distance compared to a PRAM simulation. Below are the key
steps of the algorithm:

1) Sort the non-zero matrix entries by column index (i.e.,
the second coordinate of each triple (i, j, Ai,j)). This
step groups entries into segments corresponding to the
same column.

2) For each segment, designate the first processor holding a
matrix entry as the column leader. Each processor sends
its column index to the next processor in the sequence;
if the received index differs from its own or no message
is received, it becomes a leader.

3) Each column leader requests the corresponding vector
entry xj and broadcasts it to all processors in its segment
using a segmented broadcast implemented via a parallel
scan.

4) Each processor holding a matrix entry (i, j, Ai,j) com-
putes the partial product Ai,jxj .

5) Sort the partial products by row index (i.e., the first co-
ordinate of each triple), grouping products contributing
to the same row of the result.

6) As with columns, identify row leaders by comparing row
indices. Row leaders manage the summation for each
segment.

7) Perform a segmented scan to sum the partial products
Ai,jxj for each row. The row leader stores the final
result (Ax)i.

Theorem VIII.2. Sparse matrix-vector multiplication takes
O(m3/2) energy, O(log3 n) depth, and O(

√
m) distance.

Proof: The cost is dominated by the sorting and scanning
primitives (Theorem V.8 and Lemma IV.3).

Discussion. We have demonstrated that SpMV can be im-
plemented efficiently using the spatial dataflow model, achiev-
ing energy-optimal performance when the number of non-zero
entries m = O(n). Starting from a looser bound derived from
PRAM simulation, we improved both the depth and distance
metrics by carefully applying sorting and scanning primitives.
These results illustrate how our algorithmic tools can be used
to formulate efficient algorithms for sparse computations, with
optimal energy for large, sparse matrices.

IX. CONCLUSION

In this paper, we presented the first energy- and distance-
optimal algorithms with poly-logarithmic depth for funda-
mental operations, including parallel scan, rank selection, and
sorting, within the Spatial Computer Model. These primitives
form the foundation for more complex algorithms, such as
sparse matrix-vector multiplication, demonstrating their broad
applicability to spatial dataflow architectures. Our results pave
the way for extending spatial architectures to a wider range of
computations, particularly sparse ones. This has promising im-
plications for fields like graph neural networks, where sparse
data structures and irregular access patterns pose significant
challenges that our optimized algorithms can help address.

Despite these contributions, open questions remain. Further
simplification of our sorting algorithm could reduce imple-
mentation complexity, and while our sparse matrix-vector
multiplication is energy-optimal when the number of non-zero
elements is proportional to the number of rows, the optimal
energy for denser matrices is still unknown.

In summary, this work establishes crucial foundations for
spatial dataflow algorithm design through energy-optimal
primitives, creating new possibilities for efficiently executing
complex, sparse computations on emerging hardware plat-
forms.

ACKNOWLEDGMENT

This project received funding from the European Research
Council (Project PSAP, No. 101002047). This project received
funding from the European Research Council under the Euro-
pean Union’s Horizon 2020 programme GLACIATION, No.
101070141.

This work’s language was refined for clarity, flow, impact,
and conciseness using large language models [56], [57].

REFERENCES

[1] M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens,
L. Florescu, S. Jairath, W. Liu, T. Nama, A. Sujeeth, V. V.
Kindratenko, and A. C. Elster, “Accelerating scientific applications
with sambanova reconfigurable dataflow architecture,” Comput. Sci.
Eng., vol. 23, no. 2, pp. 114–119, 2021. [Online]. Available:
https://doi.org/10.1109/MCSE.2021.3057203

[2] S. Lie, “Cerebras architecture deep dive: First look inside the
hardware/software co-design for deep learning,” IEEE Micro, vol. 43,
no. 3, pp. 18–30, 2023. [Online]. Available: https://doi.org/10.1109/
MM.2023.3256384

[3] S. L. Stewart Hall, Rob Schreiber, “Training giant neural networks
using weight streaming on cerebras wafer-scale clusters,” Cerebras
Systems, Inc., Tech. Rep., March 2023. [Online]. Available: https:
//f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/
CS%20Weight%20Streaming%20White%20Paper%20111521.pdf

[4] K. Rocki, D. V. Essendelft, I. Sharapov, R. Schreiber, M. Morrison,
V. Kibardin, A. Portnoy, J. Dietiker, M. Syamlal, and M. James, “Fast
stencil-code computation on a wafer-scale processor,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta,
Georgia, USA, November 9-19, 2020, C. Cuicchi, I. Qualters, and
W. T. Kramer, Eds. IEEE/ACM, 2020, p. 58. [Online]. Available:
https://doi.org/10.1109/SC41405.2020.00062

[5] M. Jacquelin, M. Araya-Polo, and J. Meng, “Scalable distributed high-
order stencil computations,” in SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis, Dallas,
TX, USA, November 13-18, 2022, F. Wolf, S. Shende, C. Culhane, S. R.
Alam, and H. Jagode, Eds. IEEE, 2022, pp. 30:1–30:13. [Online].
Available: https://doi.org/10.1109/SC41404.2022.00035

[6] R. Sai, M. Jacquelin, F. P. Hamon, M. Araya-Polo, and R. R. Settgast,
“Massively distributed finite-volume flux computation,” in Proceedings
of the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-W 2023,
Denver, CO, USA, November 12-17, 2023. ACM, 2023, pp. 1713–1720.
[Online]. Available: https://doi.org/10.1145/3624062.3624252

[7] J. Tramm, B. Allen, K. Yoshii, A. Siegel, and L. Wilson,
“Efficient algorithms for monte carlo particle transport on ai
accelerator hardware,” Computer Physics Communications, vol. 298,
p. 109072, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0010465523004174

[8] H. Ltaief, Y. Hong, L. Wilson, M. Jacquelin, M. Ravasi, and D. E.
Keyes, “Scaling the ”memory wall” for multi-dimensional seismic
processing with algebraic compression on cerebras CS-2 systems,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2023, Denver,
CO, USA, November 12-17, 2023, D. Arnold, R. M. Badia, and
K. M. Mohror, Eds. ACM, 2023, pp. 6:1–6:12. [Online]. Available:
https://doi.org/10.1145/3581784.3627042

[9] K. Santos, S. G. Moore, T. Oppelstrup, A. Sharifian, I. Sharapov,
A. P. Thompson, D. Z. Kalchev, D. Perez, R. Schreiber, S. Pakin,
E. A. Leon, J. H. L. III, M. James, and S. Rajamanickam,
“Breaking the molecular dynamics timescale barrier using a wafer-
scale system,” CoRR, vol. abs/2405.07898, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2405.07898

[10] C. Systems, Inc., “Cerebras systems: Achieving industry
bestai performance through a systems approach,” Apr. 2021.
[Online]. Available: https://cerebras.net/wp-content/uploads/2021/04/
Cerebras-CS-2-Whitepaper.pdf

[11] P. Luczynski, L. Gianinazzi, P. Iff, L. Wilson, D. D. Sensi, and
T. Hoefler, “Near-optimal wafer-scale reduce,” in Proceedings of
the 33rd International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 2024, Pisa, Italy, June 3-7,
2024, P. Dazzi, G. Mencagli, D. K. Lowenthal, and R. M.
Badia, Eds. ACM, 2024, pp. 334–347. [Online]. Available: https:
//doi.org/10.1145/3625549.3658693

[12] M. Orenes-Vera, I. Sharapov, R. Schreiber, M. Jacquelin,
P. Vandermersch, and S. Chetlur, “Wafer-scale fast fourier
transforms,” in Proceedings of the 37th International Conference
on Supercomputing, ICS 2023, Orlando, FL, USA, June 21-23,
2023, K. A. Gallivan, E. Gallopoulos, D. S. Nikolopoulos, and
R. Beivide, Eds. ACM, 2023, pp. 180–191. [Online]. Available:
https://doi.org/10.1145/3577193.3593708

[13] H. M. Aktulga, A. Buluç, S. Williams, and C. Yang, “Optimizing
sparse matrix-multiple vectors multiplication for nuclear configuration
interaction calculations,” in 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, Phoenix, AZ, USA, May 19-23,
2014. IEEE Computer Society, 2014, pp. 1213–1222. [Online].
Available: https://doi.org/10.1109/IPDPS.2014.125

[14] M. R. Hestenes, E. Stiefel et al., Methods of conjugate gradients for
solving linear systems. NBS Washington, DC, 1952, vol. 49, no. 1.

[15] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and
P. Sadayappan, “Fast sparse matrix-vector multiplication on gpus for
graph applications,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans,
LA, USA, November 16-21, 2014, T. Damkroger and J. J. Dongarra,
Eds. IEEE Computer Society, 2014, pp. 781–792. [Online]. Available:
https://doi.org/10.1109/SC.2014.69

[16] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, S. A. McIlraith and K. Q. Weinberger,
Eds. AAAI Press, 2018, pp. 4438–4445. [Online]. Available:
https://doi.org/10.1609/aaai.v32i1.11782

[17] J. H. Reif, Synthesis of Parallel Algorithms, 1st ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993.

[18] H. Kang, P. B. Gibbons, G. E. Blelloch, L. Dhulipala, Y. Gu,
and C. McGuffey, “The processing-in-memory model,” in SPAA
’21: 33rd ACM Symposium on Parallelism in Algorithms and
Architectures, Virtual Event, USA, 6-8 July, 2021, K. Agrawal and
Y. Azar, Eds. ACM, 2021, pp. 295–306. [Online]. Available:
https://doi.org/10.1145/3409964.3461816

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990. [Online]. Available:
https://doi.org/10.1145/79173.79181

[20] M. Kaufmann, S. Rajasekaran, and J. F. Sibeyn, “Matching the bisection
bound for routing and sorting on the mesh,” in Proceedings of the
4th Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’92, San Diego, CA, USA, June 29 - July 1, 1992, 1992, pp.
31–40. [Online]. Available: https://doi.org/10.1145/140901.140905

[21] V. Leppänen and M. Penttonen, “Simulation of PRAM models
on meshes,” in PARLE ’94: Parallel Architectures and Languages
Europe, 6th International PARLE Conference, Athens, Greece, July
4-8, 1994, Proceedings, 1994, pp. 146–158. [Online]. Available:
https://doi.org/10.1007/3-540-58184-7 97

[22] ——, “Work-optimal simulation of PRAM models on meshes,” Nord.
J. Comput., vol. 2, no. 1, pp. 51–69, 1995.

[23] S. Goddard, S. Kumar, and J. F. Prins, “Connected components
algorithms for mesh-connected parallel computers,” in Parallel
Algorithms, Proceedings of a DIMACS Workshop, Brunswick, New
Jersey, USA, October 17-18, 1994, 1994, pp. 43–58. [Online]. Available:
https://doi.org/10.1090/dimacs/030/03

[24] Y. Baumann, T. Ben-Nun, M. Besta, L. Gianinazzi, T. Hoefler, and
P. Luczynski, “Low-depth spatial tree algorithms,” in IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2024, San
Francisco, CA, USA, May 27-31, 2024. IEEE, 2024, pp. 180–192.
[Online]. Available: https://doi.org/10.1109/IPDPS57955.2024.00024

[25] C. D. Thompson, “The VLSI complexity of sorting,” IEEE Trans.
Computers, vol. 32, no. 12, pp. 1171–1184, 1983. [Online]. Available:
https://doi.org/10.1109/TC.1983.1676178

https://doi.org/10.1109/MCSE.2021.3057203
https://doi.org/10.1109/MM.2023.3256384
https://doi.org/10.1109/MM.2023.3256384
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf
https://doi.org/10.1109/SC41405.2020.00062
https://doi.org/10.1109/SC41404.2022.00035
https://doi.org/10.1145/3624062.3624252
https://www.sciencedirect.com/science/article/pii/S0010465523004174
https://www.sciencedirect.com/science/article/pii/S0010465523004174
https://doi.org/10.1145/3581784.3627042
https://doi.org/10.48550/arXiv.2405.07898
https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf
https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf
https://doi.org/10.1145/3625549.3658693
https://doi.org/10.1145/3625549.3658693
https://doi.org/10.1145/3577193.3593708
https://doi.org/10.1109/IPDPS.2014.125
https://doi.org/10.1109/SC.2014.69
https://doi.org/10.1609/aaai.v32i1.11782
https://doi.org/10.1145/3409964.3461816
https://doi.org/10.1145/79173.79181
https://doi.org/10.1145/140901.140905
https://doi.org/10.1007/3-540-58184-7_97
https://doi.org/10.1090/dimacs/030/03
https://doi.org/10.1109/IPDPS57955.2024.00024
https://doi.org/10.1109/TC.1983.1676178

[26] E. W. Mayr and C. G. Plaxton, “Pipelined parallel prefix computations,
and sorting on a pipelined hypercube,” J. Parallel Distributed
Comput., vol. 17, no. 4, pp. 374–380, 1993. [Online]. Available:
https://doi.org/10.1006/jpdc.1993.1037

[27] C. Wu and S. Horng, “Fast and scalable selection algorithms with
applications to median filtering,” IEEE Trans. Parallel Distributed
Syst., vol. 14, no. 10, pp. 983–992, 2003. [Online]. Available:
https://doi.org/10.1109/TPDS.2003.1239867

[28] M. Ajtai, J. Komlós, and E. Szemerédi, “An o(n log n) sorting
network,” in Proceedings of the 15th Annual ACM Symposium on
Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
D. S. Johnson, R. Fagin, M. L. Fredman, D. Harel, R. M. Karp,
N. A. Lynch, C. H. Papadimitriou, R. L. Rivest, W. L. Ruzzo,
and J. I. Seiferas, Eds. ACM, 1983, pp. 1–9. [Online]. Available:
https://doi.org/10.1145/800061.808726

[29] M. Paterson, “Improved sorting networks with o(log N) depth,”
Algorithmica, vol. 5, no. 1, pp. 65–92, 1990. [Online]. Available:
https://doi.org/10.1007/BF01840378

[30] K. E. Batcher, “Sorting networks and their applications,” in American
Federation of Information Processing Societies: AFIPS Conference
Proceedings: 1968 Spring Joint Computer Conference, Atlantic City,
NJ, USA, 30 April - 2 May 1968, ser. AFIPS Conference Proceedings,
vol. 32. Thomson Book Company, Washington D.C., 1968, pp.
307–314. [Online]. Available: https://doi.org/10.1145/1468075.1468121

[31] R. Müller, J. Teubner, and G. Alonso, “Sorting networks on fpgas,”
VLDB J., vol. 21, no. 1, pp. 1–23, 2012. [Online]. Available:
https://doi.org/10.1007/s00778-011-0232-z

[32] R. Reischuk, “Probabilistic parallel algorithms for sorting and
selection,” SIAM J. Comput., vol. 14, no. 2, pp. 396–409, 1985.
[Online]. Available: https://doi.org/10.1137/0214030

[33] S. Saxena, P. C. P. Bhatt, and V. C. Prasad, “On parallel prefix
computation,” Parallel Process. Lett., vol. 4, pp. 429–436, 1994.
[Online]. Available: https://doi.org/10.1142/S0129626494000399

[34] G. E. Blelloch, “Scans as primitive parallel operations,” IEEE Trans.
Computers, vol. 38, no. 11, pp. 1526–1538, 1989. [Online]. Available:
https://doi.org/10.1109/12.42122

[35] A. V. Gerbessiotis and C. J. Siniolakis, “Deterministic sorting and
randomized median finding on the BSP model,” in Proceedings of the
8th Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’96, Padua, Italy, June 24-26, 1996, 1996, pp. 223–232. [Online].
Available: https://doi.org/10.1145/237502.237561

[36] ——, “A randomized sorting algorithm on the BSP model,” in 11th
International Parallel Processing Symposium (IPPS ’97), 1-5 April
1997, Geneva, Switzerland, Proceedings, 1997, pp. 293–297. [Online].
Available: https://doi.org/10.1109/IPPS.1997.580912

[37] P. K. Jana, B. D. Naidu, S. Kumar, M. Arora, and B. P. Sinha,
“Parallel prefix computation on extended multi-mesh network,” Inf.
Process. Lett., vol. 84, no. 6, pp. 295–303, 2002. [Online]. Available:
https://doi.org/10.1016/S0020-0190(02)00317-4

[38] Y. Baumann, T. Ben-Nun, M. Besta, L. Gianinazzi, T. Hoefler, and
P. Luczynski, “Low-depth spatial tree algorithms,” in IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2024, San
Francisco, CA, USA, May 27-31, 2024. IEEE, 2024, pp. 180–192.
[Online]. Available: https://doi.org/10.1109/IPDPS57955.2024.00024

[39] S. Lakshmivarahan, S. K. Dhall, and L. L. Miller, “Parallel sorting
algorithms,” Adv. Comput., vol. 23, pp. 295–354, 1984. [Online].
Available: https://doi.org/10.1016/S0065-2458(08)60467-2

[40] F. T. Leighton, “Introduction to parallel algorithms and architectures:
Arrays, trees, hypercubes,” 1991.

[41] D. Nassimi and S. Sahni, “Parallel permutation and sorting algorithms
and a new generalized connection network,” J. ACM, vol. 29, no. 3,
pp. 642–667, 1982. [Online]. Available: https://doi.org/10.1145/322326.
322329

[42] C. D. Thompson and H. T. Kung, “Sorting on a mesh-connected
parallel computer,” Commun. ACM, vol. 20, no. 4, pp. 263–271, 1977.
[Online]. Available: https://doi.org/10.1145/359461.359481

[43] R. P. Brent, “The parallel evaluation of general arithmetic expressions,”
J. ACM, vol. 21, no. 2, pp. 201–206, 1974. [Online]. Available:
https://doi.org/10.1145/321812.321815

[44] T. Hagerup and C. Rüb, “Optimal merging and sorting on the erew
pram,” Inf. Process. Lett., vol. 33, no. 4, pp. 181–185, 1989. [Online].
Available: https://doi.org/10.1016/0020-0190(89)90138-5

[45] M. Aigner, “Parallel complexity of sorting problems,” J. Algorithms,
vol. 3, no. 1, pp. 79–88, 1982. [Online]. Available: https://doi.org/10.
1016/0196-6774(82)90010-4

[46] A. Jakobsson, “Automatic cost analysis for imperative BSP programs,”
Int. J. Parallel Program., vol. 47, no. 2, pp. 184–212, 2019. [Online].
Available: https://doi.org/10.1007/s10766-018-0562-1

[47] G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

[48] C. Burstedde, J. Holke, and T. Isaac, “On the number of face-connected
components of morton-type space-filling curves,” Found. Comput.
Math., vol. 19, no. 4, pp. 843–868, 2019. [Online]. Available:
https://doi.org/10.1007/s10208-018-9400-5

[49] P. Sanders and J. L. Träff, “Parallel prefix (scan) algorithms for
MPI,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 13th European PVM/MPI User’s Group Meeting,
Bonn, Germany, September 17-20, 2006, Proceedings, ser. Lecture
Notes in Computer Science, B. Mohr, J. L. Träff, J. Worringen, and
J. J. Dongarra, Eds., vol. 4192. Springer, 2006, pp. 49–57. [Online].
Available: https://doi.org/10.1007/11846802 15

[50] R. Cole, “Parallel merge sort,” SIAM J. Comput., vol. 17, no. 4, pp.
770–785, 1988. [Online]. Available: https://doi.org/10.1137/0217049

[51] L. G. Valiant, “Parallelism in comparison problems,” SIAM J.
Comput., vol. 4, no. 3, pp. 348–355, 1975. [Online]. Available:
https://doi.org/10.1137/0204030

[52] B. Huang and M. A. Langston, “Practical in-place merging,” Commun.
ACM, vol. 31, no. 3, pp. 348–352, 1988. [Online]. Available:
https://doi.org/10.1145/42392.42403

[53] N. Deo, A. Jain, and M. Medidi, “An optimal parallel algorithm for
merging using multiselection,” Inf. Process. Lett., vol. 50, no. 2, pp. 81–
87, 1994. [Online]. Available: https://doi.org/10.1016/0020-0190(94)
00009-3

[54] R. J. Hyndman and Y. Fan, “Sample quantiles in statistical packages,”
The American Statistician, vol. 50, no. 4, pp. 361–365, 1996. [Online].
Available: http://www.jstor.org/stable/2684934

[55] B. Doerr, Probabilistic Tools for the Analysis of Randomized Optimiza-
tion Heuristics. Cham: Springer International Publishing, 2020, pp.
1–87. [Online]. Available: https://doi.org/10.1007/978-3-030-29414-4 1

[56] OpenAI, “Chatgpt 4o,” 2024. [Online]. Available: https://chatgpt.com
[57] Anthropic, “Claude 3.7 sonnet,” 2025. [Online]. Available: https:

//claude.ai/

https://doi.org/10.1006/jpdc.1993.1037
https://doi.org/10.1109/TPDS.2003.1239867
https://doi.org/10.1145/800061.808726
https://doi.org/10.1007/BF01840378
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/s00778-011-0232-z
https://doi.org/10.1137/0214030
https://doi.org/10.1142/S0129626494000399
https://doi.org/10.1109/12.42122
https://doi.org/10.1145/237502.237561
https://doi.org/10.1109/IPPS.1997.580912
https://doi.org/10.1016/S0020-0190(02)00317-4
https://doi.org/10.1109/IPDPS57955.2024.00024
https://doi.org/10.1016/S0065-2458(08)60467-2
https://doi.org/10.1145/322326.322329
https://doi.org/10.1145/322326.322329
https://doi.org/10.1145/359461.359481
https://doi.org/10.1145/321812.321815
https://doi.org/10.1016/0020-0190(89)90138-5
https://doi.org/10.1016/0196-6774(82)90010-4
https://doi.org/10.1016/0196-6774(82)90010-4
https://doi.org/10.1007/s10766-018-0562-1
https://doi.org/10.1007/s10208-018-9400-5
https://doi.org/10.1007/11846802_15
https://doi.org/10.1137/0217049
https://doi.org/10.1137/0204030
https://doi.org/10.1145/42392.42403
https://doi.org/10.1016/0020-0190(94)00009-3
https://doi.org/10.1016/0020-0190(94)00009-3
http://www.jstor.org/stable/2684934
https://doi.org/10.1007/978-3-030-29414-4_1
https://chatgpt.com
https://claude.ai/
https://claude.ai/

	Introduction
	Methodology
	Limitations of State-of-the-Art Approaches
	Key Insights and Contributions
	Limitations of the Proposed Approach

	Related Work
	Spatial Algorithms
	Sorting, Scan, and Selection in Other Models

	Preliminaries
	Communication Collectives
	Broadcast Without Multicasting
	Low-Depth Reduce
	Parallel Scan

	Sorting
	Lower Bound
	Sorting Networks
	Energy-Optimal Sorting

	Rank Selection
	PRAM Simulation
	EREW Simulation.
	CRCW Simulation.

	Applications to Sparse Computations
	Conclusion
	References

