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Abstract
Distributed memory systems are becoming increasingly impor-

tant since they provide a system-scale abstraction where physically
separated memories can be addressed as a single logical one. This
abstraction enables memory disaggregation, allowing systems as in-
memory databases, caching services, and ephemeral storage to be
naturally deployed at large scales. While this abstraction effectively
increases the memory capacity of these systems, it faces additional
overheads for remotememory accesses. To narrow the difference be-
tween local and remote accesses, low latency RDMA networks are a
key element for efficient memory disaggregation. However, RDMA
acceleration poses new obstacles to efficient memory management
and particularly to memory compaction: network controllers and
CPUs can concurrently access memory, potentially leading to incon-
sistencies if memory management operations are not synchronized.
To ensure consistency, most distributed memory systems do not
provide memory compaction and are exposed to memory fragmen-
tation. We introduce CoRM, an RDMA-accelerated shared memory
system that supports memory compaction and ensures strict con-
sistency while providing one-sided RDMA accesses. We show that
CoRM sustains high read throughput during normal operations,
comparable to similar systems not providing memory compaction
while experiencing minimal overheads during compaction. CoRM
never disrupts RDMA connections and can reduce applications’
active memory up to 6x by performing memory compaction.
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1 Introduction
The widespread availability of fast low-cost networks with Re-

mote Direct Memory Access (RDMA) has encouraged modern data-
base management systems to adapt RDMA for improving query per-
formance [7, 38]. RDMA already empowers replication [23, 42, 45],
index structures [48], distributed transactions [11, 43, 44], and pro-
cessing of analytical workloads [5, 26]. The emergence of RDMA
has further sparked interest in distributed shared memory (DSM)
systems that combine memory of interconnected nodes as a shared
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remotely-accessible memory space [1, 2, 9, 14, 31]. In-memory
databases [8], caching services [17], and ephemeral storage [41] are
only some examples of systems enabled by this paradigm. However,
while DSM systems provide a global memory view and resource
disaggregation, they need to efficiently handle management tasks
such as memory allocation and memory defragmentation.

RDMA-capable Network Interface Cards (RNICs) empower sys-
tems to access the main memory of remote peers without involving
the host CPUs, providing up to 22x shorter latency [35], and up
to 20x higher throughput [30], compared to traditional TCP/IP
networking. However, the use of RDMA can prevent memory opti-
mization strategies, such as memory compaction. In fact, remote
objects are accessed by specifying their virtual addresses at the re-
mote host: if the remote host relocates an object, its virtual address
might change, requiring to propagate this update to the other nodes.
To avoid this issue, some RDMA systems do not expose the virtual
addresses of the stored objects, distributing instead objects’ handles
to the clients [32, 39]. While this indirection hides the process of
updating pointers of relocated objects, it can significantly hinder
performance because of the pointer chasing overheads [13, 14].

Memory fragmentation is a serious concern across the spectrum
of modern computing platforms and databases [24, 28, 36]. Tra-
ditional memory allocators without compaction can suffer from
catastrophic memory fragmentation [37, 39]. Furthermore, while
fragmentation increases memory usage of in-memory data stores
by up to 69% (e.g., Redis, MongoDB, and VoltDB) [24, 28, 33, 34, 47],
it also has a negative impact on their performance due to memory
sparsity [24]. For distributed systems, the fragmentation problem is
particularly severe as the memory space may consist of hundreds
of physical nodes and the stored data can be replicated multiple
times for fault tolerance. Each additional machine can potentially
increase the amount of wasted fragmented memory (§2.1.2).

We propose CoRM, a shared memory system that exploits RDMA
for fast remote accesses and supports memory compaction. Addi-
tionally, CoRM’s compaction is RDMA-safe: objects are still acces-
sible via RDMA (§3.5) and the user is guaranteed to observe their
consistent state (§3.2.3) even if they have been relocated by the com-
paction algorithm. To facilitate compaction, objects in CoRM are
associated with block-local object IDs that are randomly generated
at object allocation time. Our compaction algorithm is probabilistic:
two memory blocks can be compacted into one only if they are
conflict-free, that is, the objects in the two blocks do not have the
same IDs. This enables a trade-off between compaction probabil-
ity and space overhead: the larger the object ID space, the higher
the compaction probability (§3.4). In some cases, relocated objects
can experience higher access times because of indirections. Clients
can detect this situation and fix the pointers to recover efficient
one-sided RDMA access (§3.2).

CoRM is designed to provide memory compaction to RDMA-
accelerated DSM systems such as FaRM [14] without compromising
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strict consistency and one-sided RDMA accesses. It can reduce
memory occupation of FaRM by up to 6x for synthetic workloads
and up to 2.9x for real applications. We conduct a theoretical study
on the memory compaction guarantees provided by CoRM and
compare it with Mesh [36], a compaction algorithm for C/C++
applications. We extensively benchmark CoRM, showing that it
matches the read throughput of FaRM (up to 380 Kreq/s per client)
and that its compaction can increase the read throughput by 25%.

2 Distributed Shared Memory Systems
Distributed Shared Memory (DSM) systems [9, 10, 14, 46] pro-

vide an abstraction where the memory of multiple different physical
nodes is viewed as a single unified memory space. Applications
running in a DSM can randomly access their local memory or the
memory of remote nodes. To implement this abstraction, DSMs pro-
vide APIs for managing (i.e., allocating and freeing) and accessing
(i.e., reading and writing) memory. Memory accesses are translated
to load/stores if they target local memory, otherwise, they lead to
requests that are sent over the network to the target nodes.

2.1 Concurrent memory allocators
In a DSM system, the memory of a process can be allocated by

the application tasks running locally or by remote ones. Hence, a
DSM node needs to manage concurrent memory allocations, as it
would be in normal multi-threaded applications with the addition
that now allocation requests can also come from the network.

Concurrent Memory Allocators (CMAs) have two main require-
ments: (1) scale with the number of threads managing memory;
(2) maintain low memory fragmentation, maximizing memory effi-
ciency. We define memory fragmentation as the ratio between the
amount of memory granted by the operating system to a process
and the amount of memory that the process is effectively using.
2.1.1 Scalability. To improve scalability, most CMAs [6, 9, 14, 16,
25, 36] adopt a two-level architecture, as depicted by Figure 1. In
this model, each thread is served by a thread-local allocator that has
its free memory heap: the memory allocation requests are served
from this heap without the need for global synchronization. If a
thread-local allocator runs out of memory, it requests new memory
from the process-wide allocator. The process-wide allocator may
allocate memory directly from the operating system.

To avoid frequent accesses to the process-wide allocator, which
can potentially require synchronization, the thread-local allocators
fetchmore than one free page at a time. The set of free pages that are
fetched from the process-wide allocator in a single access is defined
as block. Blocks are used to store objects belonging to predefined
size classes: a given memory block can be used only for storing
objects of a certain size. An object is allocated in the smallest size
class that can fit it. Therefore, the size classes must be carefully
chosen to limit internal fragmentation.

The block-based approach introduces a trade-off between syn-
chronization overhead and memory efficiency: the larger the block
size, the less the number of accesses to the process-wide allocator,
hence the better the scalability. On the other hand, larger blocks
can lead to memory inefficiency if the allocated blocks are not fully
utilized by the allocating thread.

Concurrent Memory Allocator Model

Process-wide allocator

Thread-local allocator

Free blocks

Block (size class: 8 B)

physical pages

Block (size class: 32 B)

physical pages

Thread-local allocator

Block (size class: 8 B)

physical pages

Block (size class: NA)

physical pages
Block (size class: NA)

physical pages
Block (size class: NA)

physical pages

Figure 1: Concurrent Memory Allocator: each thread al-
locates memory from its thread-local allocator, which re-
quests memory blocks from the process-wide allocator.

2.1.2 Memory Fragmentation. High memory fragmentation can
be caused by irregular allocation spikes or low usage of particu-
lar size classes [4]. Allocation spikes happen when an allocator
experiences a high volume of allocations followed by only a par-
tial set of deallocations. The issue is that it is not guaranteed that
these deallocations will lead to memory being freed up: In fact,
blocks containing at least one object cannot be released back to
the process-wide allocator. In this scenario, the threads can be left
with many blocks that are scarcely utilized and cannot be released,
causing memory fragmentation.

Low occupancy of some size classes can also be a source of
memory fragmentation. Consider an example where an application
allocates an object of size 𝑠 on each of its 𝑇 threads: the thread-
local allocators will allocate the object from their local memory,
increasing the memory requirement to (𝑇 · 𝑠). However, if the
thread-local allocators do not have blocks of the requested size-
class, they will request a new block from the process-wide allocator,
potentially allocating up to (𝑇 · 𝐵), where 𝐵 is the block size. If
objects of size 𝑠 are uncommon, most of the newly allocated blocks
will have very low occupancy: e.g., if there is only one object per
thread of that size, the overall unused memory is 𝑇 · (𝐵 − 𝑠) bytes.
2.1.3 Memory Compaction. To reduce memory fragmentation,
CMA systems can adopt memory compaction strategies. In prin-
ciple, these strategies consist of taking a set of scarcely utilized
blocks and merging them into one, releasing the others. This pro-
cess needs to preserve the accessibility of the compacted objects
so clients could still access them. A common strategy is to employ
an indirection table that maps object keys to their current memory
location [32] allowing systems to move objects freely in memory
by updating corresponding entries in the table. However, the use of
indirection tables results in revoking direct RDMA access to stored
objects (§2.2.1) leading to a 2x reduction in read throughput [13, 14].

An alternative approach has been recently proposed byMesh [36]:
it does not use indirection tables and, instead, exploits virtual mem-
ory functionality to compact memory without the need for chang-
ing virtual addresses of relocated objects. Mesh merges the content
of scarcely utilized blocks into one block and then updates the
virtual-to-physical mapping of the affected blocks making their
virtual addresses to point to the single resulting block holding the
relocated objects. Mesh requires the relocated objects to reside at
the same offset as they did in their original blocks (i.e., no conflicts)
to preserve their virtual addresses. In Section 3.1.2, we discuss how
this constraint limits the probability of compacting two blocks and
show how our new compaction strategy can avoid this issue.
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Figure 2: Accessing remote memory via RDMA read.

2.2 RDMA-accelerated DSM systems
To efficiently enable the shared memory abstraction, DSM sys-

tems must minimize the overheads of remote memory accesses. To
narrow the performance gap between local and remote accesses,
modern DSM systems employ RDMA to ensure low latency and
high throughput [1, 2, 9, 14]. RDMA is a mechanism that allows one
machine to directly access the memory of other remote machines
across the network. The RNIC on the sender side reads data directly
from the sender’s memory and injects it into the network. On the
receiver side, the RNIC receives the data and writes it directly to the
host memory, bypassing the operating system and minimizing the
end-to-end latency. RDMA-enabled hosts communicate through
either reliable or unreliable Queue Pairs (QPs). In this work, we
consider only reliable QPs, as it is the only type of QP that supports
one-sided RDMA read operations.

In principle, all DSM operations (i.e., memory allocation and
freeing, read and writes) can be implemented as RDMA one-sided
operations. However, most of them would require multiple round-
trips, hindering the performance gains given by RDMA: e.g., al-
locating memory with only RDMA one-sided operations would
require to read, modify, and write back the allocation state of the
target node (without considering that multiple nodes of the DSM
can be targeting the same memory at the same time). We take the
approach of FaRM [14], which accelerates remote reads with RDMA,
while implementing other operations with Remote Procedure Calls
(RPCs). We now describe how RDMA can be used to accelerate read
operations and how it can help to have low-latency RPCs.
2.2.1 RDMA reads. To expose memory over the network and allow
other nodes to read it, a DSM node must register the memory on
its RNIC. Memory registration consists of pinning the associated
memory pages in physical memory and copying the related page
table entries to the Memory Translation Table (MTT) of the RNIC.
The RNIC generates keys for local and remote accesses, namely
𝑙_𝑘𝑒𝑦 and 𝑟_𝑘𝑒𝑦. The memory region can be accessed by any local
QP which has the 𝑙_𝑘𝑒𝑦 and by remote endpoints having the 𝑟_𝑘𝑒𝑦.
Figure 2 shows an RDMA read example: when the RNIC receives
an RDMA request, it translates the target virtual address using its
MTT into the corresponding physical page 1 , then it uses the
computed physical address to issue a DMA read towards the host
memory 2 , sending back the read data.

RDMA reads and memory compaction. RDMA accesses are
issued by specifying the virtual addresses of the data in the memory
of the target machine. This characteristic often limits the memory
compaction capabilities of DSM systems exploiting RDMA.Memory
compaction requires to move allocated data in memory, changing
the virtual-to-physical mapping and potentially changing the vir-
tual addresses themselves. When this happens, remote peers cannot
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Figure 3: Accessing remote memory via RPC read.

access that data via RDMA anymore because the virtual addresses
they hold may become invalid. For this reason, DSM systems like
FaRM [14], do not support compaction and therefore can suffer
from memory fragmentation, which can be especially dangerous in
scenarios like the ones discussed in Section 2.1.2.
2.2.2 RPC operations. Memory management operations and ac-
cesses can be handled via RPC. On a DSM node there is a number
of worker threads that are in charge of running application-defined
tasks and handling RPC calls. RPC requests are pushed into an RPC
queue that is shared between the worker threads. The handling
of RPC requests can be accelerated with RDMA by letting remote
peers push the RPC requests directly to the RPC queue [21].

Figure 3 shows an example of an RPC read operation: thememory
read request arrives at the RNIC and is copied directly into the RPC
queue 1 . The DSMworker threads regularly poll the RPC queue to
check for new requests. When a thread gets a memory request 2 ,
it serves the request and sends the result back to the initiator 3 .
In this case, the virtual-to-physical address translation is done by
the MMU of the core where the worker thread is executing.

3 CoRM
CoRM1 is a memory management system that exploits RDMA

to improve both latency and throughput of memory accesses. With
CoRM, we show that it is possible to enable memory compaction in
RDMA-accelerated DSM systems without introducing indirection
to take full advantage of one-sided RDMA operations.

Relation to other systems. DSM systems like FaRM sacrifice
memory compaction in order to employ RDMA to accelerate remote
communications. CoRM is designed to provide memory compaction
to RDMA-accelerated DSM systems such as FaRM without com-
promising strict consistency, but requiring storing extra metadata
in object headers (§4.4). Since CoRM’s API mimics FaRM’s API
and only adds a maintenance call for releasing unused virtual ad-
dresses (§3.3), we believe our compaction strategy can be integrated
to FaRM without extra effort.

System Type RDMA Mem. Compaction Vaddr Reuse

Mesh [36] Allocator ✗ ✓ ✗
FaRM [14] DSM ✓ ✗ -
CoRM DSM ✓ ✓ ✓

Table 1: Comparison of FaRM, CoRM, and Mesh.

The compaction strategy of CoRM is similar to Mesh [36], which
is a memory allocator supporting memory compaction for C/C++
applications. Unlike Mesh, CoRM’s memory compaction strategy
can additionally merge blocks having objects placed at the same
offsets, improving the compaction probability (§3.4). Furthermore,
1https://github.com/spcl/CoRM

https://github.com/spcl/CoRM


Table 2: CoRM APIs
API Type Pointer Correction (§3.2) Description
ctx* CreateCtx(char* ip,int port) Initialization N/A connect to a remote memory allocator
addr_t ctx::Alloc(size_t size) RPC N/A allocate object with a given size
int ctx::Free(addr_t &addr) RPC Yes free object at a given address
int ctx::Read(addr_t &addr,char* buf,size_t size) RPC Yes read object to buffer with a given size using RPC
int ctx::DirectRead(addr_t &addr,char* buf,size_t size) RDMA No read object using one-sided RDMA read
int ctx::ScanRead(addr_t &addr,char* buf,size_t size) RDMA Yes read object by reading and scanning the whole block

which contains the object
int ctx::Write(addr_t &addr,char* buf,size_t size) RPC Yes write content of buffer to the remote object using RPC
int ctx::ReleasePtr(addr_t &addr) RPC Yes an explicit call to release old object address using RPC

Mesh does not solve the problem of virtual space exhaustion, which
is addressed in CoRM’s design by tracking the block in which each
object was initially allocated (§3.3). For that, CoRM requires users
to perform additional actions, called pointer correction (§3.2) and
pointer release (§3.3), that have little effect on performance (§4.3.2).

Table 1 recaps the characteristics of Mesh, FaRM, and CoRM.
RDMA indicates if the system supports RDMA-accelerated remote
accesses;mem. compaction indicates if the system supports memory
compaction; vaddr reuse tells if the system can reuse virtual ad-
dresses after compaction, avoiding virtual address space exhaustion
(§3.3). CoRM improves over Mesh by introducing a new compaction
strategy that increases the probability that two memory blocks can
be compacted and it extends FaRM by introducing support to mem-
ory compaction, making it resilient to memory fragmentation while
still preserving strong consistency and one-sided RDMA accesses.

Interface. The API is shown in Table 2. Users can allocate and
free objects using Alloc and Free. Allocations return 128-bit point-
ers that can be used to access objects. Those pointers include the
actual 64-bit object address and RDMA-related metadata such as
the r_key. Read operation can be used to read an object given its
pointer. CoRM supports two types of reads: via RPC (read) and via
one-sided RDMA (DirectRead). One-sided RDMA reads are lock-
free and are performed without involving the remote CPU. The
application is guaranteed to observe a consistent object state even
in case of concurrent writes to the same object. To support lock-
free consistent RDMA reads, we embed versioning information
into the object itself [14]: a version number is stored with each
cacheline, allowing the reader to check consistency by verifying
that all cachelines that have been remotely read have the same
version number. This strategy relies on cache-coherent DMA and
requires cacheline-aligned allocation. If the consistency check fails,
the RDMA read needs to be issued again. To update an object, the
user can use theWrite call to write a local buffer to a remote one.

3.1 Memory allocation and compaction
CoRM supports compaction that does not compromise the object

pointers of the clients. Our system exploits RDMA-aware memory
remapping to silently move objects across physical memory blocks
while preserving their virtual addresses and RDMA access keys.
3.1.1 Allocation algorithm. CoRM uses a concurrent memory allo-
cator as described in §2.1, similar to most memory systems [9, 14,
16, 25, 36]. The allocator supports a list of distinct 8-byte aligned
sizes, that are chosen to reduce the average internal fragmentation
due to round up to the nearest size class. The process-wide block
allocator in CoRM can allocate blocks with sizes that are multiples

of 4 KiB (i.e., a normal-sized page). However, CoRM can easily be
extended to work with huge pages to reduce the number of pages.

Block allocation is performed in two steps: first, we allocate a
physical page using the memfd_create system call [29]; then the
allocated physical page is mapped to virtual space using mmap.
The process-wide allocator keeps track of all virtual-to-physical
mappings. The memfd_create call creates an anonymous file that
lives in RAM, which can be modified, truncated, and memory-
mapped as a regular file. To reduce the number of allocated file
descriptors, CoRM allocates files of 16 MiB and uniquely identifies
physical blocks as a tuple of the file descriptor and the page offset
in the file. The block allocator is also responsible for registering
allocated blocks with the RNIC to enable remote access (§3.5).
3.1.2 Compaction algorithm. CoRM can compact blocks of the
same size class belonging to the same machine. The high-level idea
of the compaction algorithm is to find two blocks of the same class
with low utilization and copy objects from a block (i.e., source) to
the other (i.e., destination), as illustrated in Figure 4. Once all objects
have been copied, the source block can be deallocated and its virtual
address is remapped to the physical address of the destination block.
At this point, we have two virtual addresses pointing to the same
physical page. The mapping is updated also on the RNIC in order
to preserve RDMA access to the objects of the source block (§3.5).

A similar approach to memory compaction has been proposed by
Mesh [36]. However, in Mesh compaction is only possible when no
objects in the blocks occupy the same offsets. The limitation comes
from the fact that Mesh is a plug-in replacement for malloc in C/C++
programs where the applications can freely read and write memory
by using virtual addresses with load/store instructions. In that case,
the page virtual address can be remapped transparently (i.e., the
translation is performed by the MMU) but the object offsets cannot
change. Thus, Mesh can compact blocks only if their objects do
not conflict in offsets. In DSM systems, however, users always use
explicit read/write functions to access memory: these are needed
to resolve remote pointers and to enable concurrency control.

CoRM takes advantage of the DSM programming model and
relaxes the requirement of the compacted objects keeping the same
offsets after compaction. To achieve that, CoRM assigns identifiers
(IDs) to each object in the block. The ID is unique only within a
single block and is generated randomly using a uniform distribution.
An object is uniquely identified in memory by the block address and
the object ID, which is stored in the header of the object. This design
choice allows CoRM to compact two blocks only if the objects in
them do not have the same IDs. Differently from Mesh, where
the compaction condition is based on offsets, in CoRM the object
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Figure 4: Compaction of two blocks without conflicts on ob-
ject offsets or IDs. After compaction, the virtual addresses
of block 1 point to block 2.
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Figure 5: Compaction with offset conflicts. CoRM can com-
pact the blocks bymoving objects. Accesses tomoved objects
with indirect pointers need additional pointer correction.

IDs are random and the IDs size can be tuned (16 bits by default),
improving the compaction probability. In fact, while blocks can also
have conflicts in the object IDs, they are less probable than offset
conflicts (§3.4). Figure 5 shows an example where the blocks to
compact have conflicting offsets. In this case, a Mesh-like approach
would not be able to compact, while CoRM can move the conflicting
objects to a different offset, preserving their IDs.

During compaction, it is preferable to preserve the offset of the
objects as it preserves the virtual addresses of compacted objects.
When it is not possible (i.e., because of offset conflicts), CoRM is
free to move objects to new offsets within the block. The moved
objects can still be found by looking for their object IDs which is
included in the 128-bit pointers returned by the Alloc function. A
pointer that points to an object that has been moved to a different
offset is defined as indirect. Instead, pointers to objects that have
not been moved even after compaction are defined as direct. When
accessing an object with an indirect pointer, the virtual address
translation will point to the correct block but the object will not be
found at the given offset. In this case, CoRMwill need to perform an
additional action, called pointer correction (§3.2), in order to retrieve
the requested object. The pointer correction is implicitly performed
during all API calls but one-sided DirectRead (see Table 2).
3.1.3 Compaction policy. CoRM calculates a fragmentation ratio
for each size class. CoRM triggers compaction for a size class if
its fragmentation ratio exceeds a fragmentation threshold. The
fragmentation threshold can be tuned for each size class depending
on its compaction probability (§3.4). CoRM can additionally start
compaction when an allocation fails due to shortage of memory.
3.1.4 Compaction mechanism. In CoRM, each thread has its pri-
vate memory allocator. Therefore, the blocks that can be compacted
may belong to different threads, preventing efficient lockless mem-
ory compaction. To address this issue, CoRM selects one of the
worker threads as a compaction leader, that performs compaction
in two stages: block collection and block compaction. During the
block collection, the leader broadcasts a collection request to all
other threads, asking for sufficiently low-occupancy blocks of a
certain size-class. In the second stage, after all threads reply to the
collection request, the leader can start the compaction algorithm.
Our two-stage design removes the need to have costly concurrent
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Figure 6: CoRM supports two approaches for pointer correc-
tion: thread messaging, and memory scanning. The worker
received a request to read object ID:29 from address 0x1220,
which belongs to block 0x1200, but the object has been
moved to address 0x1230.

data structures since CoRM holds an invariant that any block is
owned by at most one thread. CoRM tries first to compact the least
utilized blocks, as they have fewer elements and induce fewer offset
collisions. During compaction of two blocks, besides coping objects,
CoRM also merges metadata of the affected blocks. The metadata
is a hash table that keeps a mapping between object IDs and offsets
used only for fast pointer correction (§3.2).

3.2 Pointer correction
As the compacted objects can move within memory after com-

paction, the virtual pointer held by the user may not directly point
to the desired object. To avoid searching an object in its block, each
user’s object pointer contains the offset hint where the object is
expected to be in the block. CoRM always optimistically accesses
the object at the hinted offset (using a load instruction) and then
checks its ID. If the ID of the accessed object does not match the
one in the used pointer, then CoRM performs a search to find the
requested object. Once the object is found, the hint inside the object
pointer is updated to the new offset, making the pointer direct.
3.2.1 RPC calls. Pointer correction is transparent to the user when
RPC-based calls are used to read and write objects. We show two
approaches that can be used to find objects accessed with indirect
pointers: the first approach uses inter-thread communication, while
the second directly scans the block with the requested object in
order to find it. Figure 6 illustrates both approaches. Whenever
an RPC read call is served 1 , CoRM checks if the object ID of
the hinted object matches the ID of the requested one 2 . If this
check fails and the solution with inter-thread communications is
employed (left), then the thread serving the RPC request forwards
it to the thread owning the requested block 3 . In this way, the
owner thread can quickly query metadata of the block to determine
the position of the object 4 . For each block we keep a thread-local
mapping between object IDs and offsets stored in it. Once the object
is found, the owner thread sends the corrected pointer back to the
thread handling the RPC request 5 allowing it to complete the
request and reply to the client 6 . While this approach is more
efficient for large block sizes since it avoids expensive scans, it can
delay the request processing if the owner thread is busy with other
activities (e.g., compaction). Instead, the block-scanning approach
does not require inter-thread communications by letting the thread
serving the RPC call scan the block with the requested object, even
if it belongs to another thread. The thread compares the IDs of all
allocated objects with the ID of the requested one to find the new
offset 3 . After the object is found, it is sent back to the client 4 .



3.2.2 RDMA calls. RDMA read accesses are not served by the
CoRM worker threads but are directly performed by the RNIC. This
implies that the pointer correction mechanisms we described above
cannot be applied for DirectRead calls and that we need to move the
pointer-correction activity to the client side. Similarly to the RPC
case, a client performing an RDMA read can detect if the read object
is correct by comparing its ID to the one stored in the accessed
pointer. If the two do not match, then the client has two options: (1)
issue an RPC-read, triggering the pointer correction mechanisms of
above; (2) issue an RDMA read of the entire block where the object
is stored. With (2), the CoRM client-side library scans the block in
order to find the requested object. We define (2) as ScanRead.
3.2.3 Consistency. Clients interfaced with CoRM are guaranteed
to observe consistent objects even in the case reads are interleaved
with writes or happen while memory compaction is in progress.
While RPC calls can directly ensure consistency by employing
explicit locking of object headers, this is not true for RDMA reads.

When performing a DirectRead, CoRM issues a one-sided RDMA
read to retrieve the object and then checks if the read object is
valid. Other than the case described in Section 3.2.2, there are two
reasons for which a read object might be invalid: (1) the read object
is being updated by a concurrent write (i.e., the object is corrupt);
(2) the read object is under compaction. To detect the first case, we
store the object version into the header of the object and in the first
byte of each cacheline, as proposed by FaRM [14]. Writes to the
object increase the object version. Clients can verify the validity of
the read objects by checking that the version numbers match. To
detect the second case, we store a lock state into the object header
(2 bits). At the beginning of a compaction process, CoRM locks all
objects that are going to be compacted. If a client reads a locked
object, then the object is invalid. In case the read object is detected
as invalid, then the read is repeated after a backoff period.
3.2.4 Fault Tolerance. The current implementation of CoRM is not
fault tolerant. Thus, we assume that if any thread fails then the
whole process fails. Fault tolerance is an interesting area of future
work. CoRM could employ a fault-tolerant replication protocol
(e.g., [15, 18, 22, 42]) to withstand failures.

3.3 Pointer release
The main effect of the CoRM compaction scheme is to reduce the

physical memory utilization by reducing fragmentation. However,
this does not automatically translate to lower utilization of the
virtual address space since all virtual addresses are preserved after
compaction. As a result, if virtual addresses are not released in the
long run, solutions like CoRM or Mesh can run out of virtual space.

To address this problem, CoRM stores the address of the virtual
block where the object has been initially allocated in the header of
each object. This allows us to keep track of how many objects that
have been moved out from an old virtual address are still valid and
can still be accessed. Once there are no more of such objects, i.e.,
they have been deallocated with Free calls, then CoRM can safely
assume that the virtual address can be reused.

Additionally, CoRM provides the ReleasePtr call allowing clients
to explicitly release an old object pointer without actually freeing
the corresponding object. This call can be used by the clients to
communicate that all copies of the old pointer have been corrected
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Figure 7: Compaction probability of two random blocks de-
pending on occupancy and size class. CoRMprobabilities are
reported for 8-bit and 16-bit object IDs.

and it is safe to reuse that address. The clients must ensure that the
pointer is not reused to address the same object once it has released
it. CoRM always notifies the user if it uses an old pointer. Note an
old pointer can be corrected to become direct (i.e., having correct
offset), but it will still reference the old block address. We expect
ReleasePtr calls to be rarely used (only when virtual space is almost
exhausted) as Free calls can implicitly free unused virtual space.

3.4 Probability of compaction
A key threat to CoRM’s memory compaction capabilities are

collisions in object IDs. This issue is similar to the one that Mesh
has for allocation offsets, where a conflict in the offsets prevents
two blocks from being compacted. We now define the probability of
compaction of two blocks 𝐵1 and 𝐵2 depending on their occupancy.

We denote 𝑝 (𝐵1, 𝐵2) as the probability of compacting the block
𝐵2 into the block 𝐵1. Note that the probability 𝑝 (𝐵1, 𝐵2) is equal
to 𝑝 (𝐵2, 𝐵1). As only blocks of the same type are compactable, we
denote 𝑠 as the total number of objects that can be stored in a block.
We denote 𝑛 as the total number of different object identifiers a
block can have. For Mesh, 𝑛 is the number of objects a block can
store, which is equal to 𝑠 . For CoRM,𝑛 is the total number of possible
object IDs, which is 2𝑥 , where 𝑥 is the number of bits used to store
the object IDs. The value of 𝑥 is a parameter of CoRM and can be
used to tune the compaction probability. The larger object IDs, the
lower the probability of ID conflicts but increases memory usage,
as they are stored in the header of each object (§3.3). This is a key
difference from Mesh, where 𝑛 depends solely on the block and the
object class size. E.g., for 16 byte objects, a 4 KiB block can store
256 objects, whereas for 128 byte objects the same block can fit
only 32 objects. In this case, if CoRM would use 8-bit IDs, then it
would have the same compaction probability of Mesh. However,
already for larger size classes, the compaction probability of CoRM
with 8-bit IDs will become higher than Mesh, because the number
of offsets that Mesh can use would decrease.

We define 𝑏1 and 𝑏2 as the number of objects stored by 𝐵1 and
𝐵2, respectively. Assuming that object IDs are randomly generated
with a uniform distribution, the probability of no collisions is:

𝑝 (𝐵1, 𝐵2) =


(𝑛−𝑏1
𝑏2

)(𝑛
𝑏2

) , if 𝑏1 + 𝑏2 ≤ 𝑠

0, otherwise,

where
(𝑛
𝑘

)
is the binomial coefficient,

(𝑛−𝑏1
𝑏2

)
is the total number of

blocks not using any ID of the objects stored in 𝐵1, and
(𝑛
𝑏2

)
is the

total number of blocks that have 𝑏2 allocated objects. When the



sum of objects in two blocks is greater than the total number of
slots, then the blocks are not compactable.

Figure 7 compares the probability of two random blocks of 4 KiB
being compactable depending on their occupancy (four sub-figures)
and size classes (x-axis). CoRM performs better than Mesh in all
situations. In particular, for large object sizes, CoRM succeeds even
for high occupancy using only 8-bits for identifiers, whereas Mesh
has near-zero probability. With 16-bit IDs, CoRM consistently pro-
vides a higher chance of compaction regardless of block occupancy.
We conclude that CoRM is a better choice for memory compaction
in DSM systems since it has a higher likelihood of compacting
memory blocks even with 50% utilization.

3.5 Preserving RDMA access
When an RNIC receives an RDMA request, it translates the

requested virtual address to a physical one using its Memory Trans-
lation Table (MTT), which contains virtual-to-physical page trans-
lation entries. Whenever a new memory region is registered, a new
entry is installed in the MTT, enabling RDMA access to that region.
However, if the page is remapped because of compaction (i.e., the
virtual address is associated with a different physical page), then
also the corresponding entry in the RNIC’s MTT must be updated.
Otherwise, RDMA accesses referencing that virtual address will ac-
cess the wrong physical page. One possible solution is to re-register
the pages every time they get remapped. However, according to the
RDMA specification, this will cause the invalidation of the 𝑟_𝑘𝑒𝑦:
all clients would need to be informed of this event and update the
𝑟_𝑘𝑒𝑦 to the remote objects. A client making an RDMA access with
an invalid 𝑟_𝑘𝑒𝑦 causes the RDMA QP disconnection, potentially
leading to high overheads for recovering (e.g., re-establishing the
connection), which can take few milliseconds.

To avoid these overheads, CoRM supports three approaches for
restoring RDMA accesses after page remapping, both preserving
the 𝑟_𝑘𝑒𝑦 of the original registration. The first approach relies on
the ibv_rereg_mr call, which re-registers the memory and preserves
its access keys. While this approach works on any commodity
RNIC, we observed that RDMA accesses to memory regions under
re-registration break the QP connection, which complies with the
InfiniBand specification [3]. The second and third approaches rely
on the On-Demand-Paging (ODP) capabilities of RNICs. ODP does
not compromise the connection but only works on modern RDMA
devices. ODP is a technique that allows RNICs to implicitly request
the latest address translation entries from the OS when pages are
invalid in the MTT or if their mapping changed. ODP enables
consistency between OS and RNIC translation entries. The second
approach solely relies on ODP, whereas the third approach also
exploits ODP prefetching to reduce the overhead of MTT misses.

Figure 8 shows the latency of the three solutions on a Mellanox
ConnectX-5 card. In all cases, the address must be first mapped with
anmmap call, which takes around 2 𝜇𝑠 . With the first approach, the
ibv_rereg_mr call takes approximately 9 𝜇𝑠 to update the translation
entry on the RNIC. During that time, the virtual address is unavail-
able and all remote accesses to it will cause QP disconnections.
Using the second approach, the CPU does not need to explicitly
fix entries in the MTT as the RNIC will resolve inconsistencies via
ODP. However, we observe that the first RDMA read from a page
that has been remapped incurs in a 63 𝜇𝑠 overhead: this is the cost

mmap (1.9 – 2.3 us)

ibv_rereg_mr (8.5 – 9.6 us)
mmap (1.9 – 2.3 us)

mmap (1.9 – 2.3 us)
ibv_advise_mr (4.5 – 4.6 us)

RDMA read

RDMA read

RDMA read

time1

2

3

ODP miss (62-65 us)

Figure 8: RDMA remapping latencies for three strategies.

paid by ODP to invalidate and install the new mapping into the
MTT. Subsequent reads have a 2 𝜇𝑠 latency. To reduce the overhead
of ODPMTT updates, verbs support the prefetching of MTT entries
with the ibv_advise_mr call. The latency of prefetching is 4.5 𝜇𝑠 ,
which can potentially save the ODP overhead if the read requests
arrive after the prefetching completed. This is the default solution
adopted by CoRM for memory registration and remapping.

4 Evaluation
We evaluate the performance of memory access and manage-

ment operations with CoRM and its memory compaction capabili-
ties. We first study the performance of CoRM with direct pointers
and indirect pointers to evaluate performance degradation when
objects move. Then we measure the performance of CoRM during
compaction under synthetic and YCSB [12] workloads. Later, we
evaluate CoRM’s ability to compact memory and compare it with
Mesh for synthetic workloads and real applications.

Experimental setup. The experiments are conducted on an
isolated cluster with 12 machines interconnected with an FDR
InfiniBand network. Each machine is equipped with ConnectX-3
InfiniBand network cards and two 3.40 GHz Intel Xeon E5-2630 v3
CPUs (16 hardware threads). CoRM is implemented in C++ and
depends on: libibverbs, an implementation of the RDMA verbs;
librdmacm, an implementation of the RDMA connection manager;
and libev, a high-performance event loop.

We deploy CoRM on a dedicated machine and spawn clients
on other interconnected machines: all clients connect to CoRM re-
motely and send requests over the network. If not stated differently,
we configure CoRM with blocks of 4 KiB and 8 worker threads.

4.1 Operations Latency
CoRM enables lock-free RDMA-accelerated DSMs with memory

compaction capability. To achieve this, all memory accesses spec-
ified by the applications must be issued through the CoRM API
and cannot directly use load/store instructions for local accesses
or raw RDMA calls (e.g., ibverbs) for remote ones. We now discuss
the latency of the memory access and management operations of
CoRM. The operation latency is defined as the time observed by a
client to complete the operation (i.e., round-trip time).

Latency of direct accesses. Figure 9 shows the median latency
of different CoRM functions when all pointers are direct (i.e., no
object has been relocated because of memory compaction). To show
the overhead introduced by CoRM, we also report the round-trip la-
tencies of RPC and raw one-sided RDMA reads. RPC operations are
implemented using raw Send/Recv RDMA operations. The bench-
mark first loads CoRM with 10,000 objects of each size-class (≈40
MiB in total), then starts the client to issue the different operations.
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The round trip latencies of RDMA requests are under 4 𝜇𝑠 . For
comparison, the TCP/IP traffic over the same link using IPoIB has
a latency of 17 𝜇𝑠 . Alloc and Free calls add about 0.5 𝑢𝑠 to the
base RPC call to manipulate the memory. However, this number
accounts for the allocation case when the thread-local allocator
always has a block of the requested size-class. If this is not the case,
the thread-allocator needs to request a new block, increasing the
allocation latency by an additional 5 𝑢𝑠 (i.e., to allocate a new block
and register its memory on the RNIC). Read and write over RPC
have similar performance as they communicate the same amount
of data. The round-trip latency of the raw RDMA reads can be as
low as 1.7 𝑢𝑠 . The consistency protocol which checks the integrity
of the read data in DirectReads only increases the latency for large
objects. For objects smaller than 256 bytes, the DirectRead call
has approximately the same latency as a raw RDMA read. These
results show the benefit of using one-sided RDMA operations over
Send/Recv calls for latency-sensitive read-only workloads.

Latency of indirect accesses. Tomeasure the effects of indirect
accesses, we measure the latency of read and write calls targeting
compacted objects that have been moved to a different offset. In this
case, the client is using an indirect pointer for accessing the objects
(i.e., the pointer has an incorrect offset). Figure 10 (left) shows
that there are no significant differences in latency between direct
and indirect pointers for RPC requests. In throughput-intensive
workloads, however, we observed a 5% drop in performance for
RPC requests (§4.3). While RPC requests using indirect pointers
can be fully handled by the CoRM workers, a failing DirectRead
requires the client to perform an additional action to recover the
requested object (i.e., pointer correction). We show the costs of
the two pointer correction strategies: ScanRead and RPC read (see
§3.2). We observe that with this configuration (i.e., blocks of 4 KiB)
using an RPC call to backup a failed DirectRead is more expensive
than a ScanRead. However, for large block sizes, the first approach
can be more efficient because it avoids to move the whole block
over the network but it would still require more CPU time on the
CoRM workers in order to perform the fix.
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Figure 11: Read Throughput of CoRM, FaRM for remote and
local accesses compared to direct memory accesses using
RDMA and load/store instructions.

Once a client realizes that an object has beenmoved and it has up-
dated all its references to that object, it can communicate to CoRM
that it is now safe to reuse the old object’s virtual address (§3.3).
This is done with the ReleasePtr call. Figure 10 (right) shows the
latency of this operation and the one of an RPC call for a reference.
The pointer release costs about 0.3 𝑢𝑠 for indirect pointers and does
not depend on the object size. This latency includes the time needed
by CoRM to find the moved object (§3.2).

4.2 Read throughput
We now show the throughput achieved by CoRM when objects

are remotely or locally accessed. We compare the read throughput
achieved by CoRM with the one of FaRM2 and the one achieved by
load instructions for local reads and raw RDMA calls for remote ac-
cesses. The former scenario can be compared to an ideal Mesh-based
DSM system where applications are free to use load/store instruc-
tions for local accesses. This case represents a best-case scenario for
Mesh because it does not consider the additional synchronization
overheads that should be introduced to keep consistency in case of
concurrent read and writes.
4.2.1 Synthetic workload. We load the systems with a total of 8
GiB of data for each size class. The objects are accessed uniformly
to ensure that data is accessed from DRAM and the clients have at
most one outstanding request at a time. Figure 11 shows the results.

For remote accesses, raw RDMA shows the best performance (380
Kreq/sec for small objects) as clients do not need to verify cache ver-
sions. FaRM and CoRM have approximately the same performance
as they both share the same approach for checking consistency. For
small object sizes, the consistency check has negligible overhead,
while it causes up to 2% slowdown w.r.t. raw RDMA for large ob-
jects. This is expected as large objects require more cachelines to
be checked. CoRM’s cache version approach for consistency checks
was a deliberate choice to mimic FaRM. An alternative approach
is to store a single checksum in the header of a record or after the
record [30], which is potentially a better strategy for large records.

For local accesses, we compare the throughput of FaRM and
CoRM to the one achieved by a memcpy call. FaRM is not more
than 1.01x faster than CoRM for all sizes. FaRM and CoRM are both
1.33 times slower than memcpy because of the additional software
layer. For larger object sizes, the performance is approximately the
same for all three approaches as object accesses are memory bound.
2FaRM is not open-source, therefore, we emulated FaRM (including its cacheline
consistency check) following the publicly available information.



1 2 4 8 16 32
Number of clients

0

500

1000

1500

2000

2500

Th
ro

ug
hp

ut
 K

re
q/

se
c

Uniform

RDMA

RPC
1 2 4 8 16 32

Number of clients

Zipf 0.99

RDMA

RPC

100:0 RPC 95:5 RPC 50:50 RPC 100:0 RDMA 95:5 RDMA 50:50 RDMA

Figure 12: Aggregate throughput of CoRM under YCSB and
uniform workloads for different read:write access ratios.

4.2.2 YCSB workloads. To understand the read throughput that
CoRM achieves under realistic workloads, we benchmark it under
different YCSB [12] workloads. We load CoRM with 8,000,000 ob-
jects of 32 bytes and measure the throughput achieved by RPC and
DirectReads. In Figure 12, we compare the performance of CoRM
under Zipf (𝜃 = 0.99) and uniform distributions, while varying the
number of clients. We report the total throughput of CoRM aver-
aged over one minute period after a steady state under different
read:write access ratios and numbers of clients. The lines tagged
with RDMA use DirectRead to read objects, whereas RPC tagged
lines use RPC reads. Writes are always performed using RPC.

RPC reads achieve lower throughput than RDMA reads, and
the difference becomes larger for workloads with more reads. The
aggregate throughput grows as we add more clients. However, in
the RPC calls, the throughput stabilizes at 700K req/sec for more
than 4 clients. DirectReads allows clients to achieve 1,250K req/sec
for the 50:50 ratio, which is a 2x improvement over RPC reads. For
read-dominant workloads, the throughput goes even higher up to
1,750K req/sec and 2,200K req/sec for uniform and Zipf distributions
respectively, which shows the superiority of RDMA-based accesses
over RPC. The Zipf workload shows a higher throughput because it
has a better memory locality compared to the uniform distribution.
This is beneficial for the destination RNIC: in fact, RNICs have
limited cache for address translation entries, and once the cache is
full the MTT will swap and incur in more misses [14].
4.2.3 DirectReads under contention. To evaluate the failure rate of
lock-free one-sided reads, we measure the number of failed Direc-
tReads over a period of one minute for the YCSB workload with
50:50 read:write ratio, while varying the skewness of Zipf distribu-
tion and the number of clients. The experiment was performed in
the same setting as the previous experiment (§4.2.2).

Figure 13 shows that the number of conflicts increases with the
number of clients and the skewness of the distribution. Nonetheless,
even for the highly skewed workload (𝜃 = 0.99) and 32 clients,
clients observed only 659 failed DirectReads per second, which is
less than 0.1% of the total request rate.
4.2.4 Performance under fragmentation. To understand the impact
of fragmentation on CoRM’s throughput we benchmark its perfor-
mance under YCSB workloads for two settings: no fragmentation
(as in the previous experiment) and high fragmentation. To create
the high fragmentation setting, we load CoRM with 16,000,000 ob-
jects of 32 bytes and then randomly deallocate the 50% of them. In
Figure 14, we compare the performance of CoRM under the load of
8 clients, while varying the skewness factor of Zipf distribution.
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Figure 14 shows that the unfragmented memory provides a 1.25x
increase in throughput of DirectReads formoderately skewed access
patterns over the fragmented one. For the highly skewed pattern
(𝜃 = 0.99), CoRM’s performance is approximately the same for both
settings, as the clients mostly access the same small set of keys.

4.3 Compaction performance
To characterize the performance the CoRM compaction process

we first study its latency (i.e., the time needed to perform the mem-
ory compaction), then analyze how the throughput of remote clients
is affected when the server is busy in performing the compaction.
4.3.1 Compaction latency. The compaction process is composed
of two phases: block collection and block compaction. During the
block collection phase, the thread performing the compaction gath-
ers blocks that are candidates for compaction (§3.1.4): i.e., non-full
and belonging to the same size class. Figure 15 shows the time for
these two phases. Since block compaction involves page remap-
ping, which depends on the specific RNIC and remapping strategy
(§3.5), we compare the compaction latencies measured on machines
equipped with ConnectX-3 and ConnectX-5 with ibv_rereg_mr, and
ConnectX-5 with ODP and prefetching. The block collection phase
involves inter-thread communications, hence we compare two dif-
ferent CPUs: Intel Xeon (§4) and AMD EPYC 7742 @ 2.25GHz. Each
experiment consists of allocating a single object of 32 bytes on
each thread and then triggering the compaction process in order to
measure its latencies.

Block collection. The collection time depends on the number
of threads as all threads must reply to the collection request before
the compaction can happen. In this experiment, each thread replies
with its only allocated block to the compaction request. The results
are shown in Figure 15 (left). On the Intel cluster, the collection
takes 10 𝜇𝑠 for 2 threads and 31 𝜇𝑠 for 16 threads We notice that
the collection takes on 2 𝜇𝑠 on the AMD cluster, when 2 threads
are used, which is 5x times faster than Intel. The two clusters show
similar latencies when increasing the number of threads.

Block compaction. The compaction time depends on the block
size and the number of blocks that can be compacted. In particular,
it involves the checks of compactability requirements, the data copy,
and the virtual address remapping on both the OS and the RNIC. The
compaction time of a single block corresponds to the unavailability
period of that block as the data in this block is not accessible because
of compaction. In this experiment, blocks under compaction have
only one object and are always compactable (i.e., no conflicts). Thus,
the number of deallocated blocks after compaction is equal to the
number of threads minus one.
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Figure 15 (center) shows how the block compaction latency varies
with the number of blocks to compact. The block size is fixed to
4 KiB (i.e., one page). The compaction time grows linearly with
the number of blocks (note that the x-axis is exponential). With
ConnectX-3, the block compaction takes about 100 𝜇𝑠 , with most of
the time (70 𝜇𝑠) spent into the ibv_rereg_mr call. The same call on
ConnectX-5 takes 7 𝜇𝑠: since this call is executed for each remap-
ping, the difference in performance increases with the number of
blocks to compact. The ODP strategy provides the best results as it
does not require explicit memory re-registration.

Figure 15 (right) shows the compaction latency of a single block
for different block sizes. The bigger the block size, the more physical
pages need to be remapped. For 1-page blocks, the block compaction
takes 100 𝜇𝑠 for ConnectX-3, and the time grows linearly with the
number of pages. For 1 MiB blocks, consisting of 256 pages, the
compaction takes 12𝑚𝑠 for ConnectX-3. ConnectX-5 can remap
pages faster, but the cost of the re-registration has the same trend
as ConnectX-3. In case large blocks are used, the remapping time
can be significantly reduced by using huge pages. For example, a 2
MiB page has the same remapping and re-registration latency as a
4 KiB page. Therefore, all reported data is applicable to huge pages.
4.3.2 Throughput during compaction. Weevaluate the performance
degradation of CoRM during compaction. In this experiment, we
populate CoRM with 8,000,000 objects of 32 bytes and randomly
deallocate the 75% of them. Then we start the throughput workload
that repeatedly and sequentially reads all objects. After the warm-
up, we trigger the compaction algorithm. In all experiments, the
compaction is invoked after two seconds. We measure the through-
put of a single client before, during, and after compaction.

Figure 16 shows the read throughput observed by clients access-
ing data with different types of read calls (i.e., RPC and RDMA) and
different pointer-fixing strategies. We also study the performance
of the two different approaches for pointer-correction, which is
used when an object is accessed with an indirect pointer (see §3.2).

Thread messaging.We measure the throughput of two types
of clients: one using RPC reads, and the other using DirectReads
(RDMA). In the first experiment (top sub-figure), CoRM is config-
ured to use thread messaging to find objects which are requested
using RPC calls. The RDMA client needs to recover by itself in case
the read fails (i.e., because the object has been moved). Here we
show the case where the client issues a ScanRead to back up a failed
DirectRead. The RPC client observes 700𝑚𝑠 of unavailability, as a
requested object has been moved to a different offset and CoRM

Figure 16: Read throughput of RPC and RDMA clients be-
fore, during, and after compaction. During the compaction,
CoRM compacts 5,794 blocks. (top) Pointers are corrected
with thread messaging; (bottom) pointers are corrected with
the block scan strategy.

could not find it by using the passed pointer. The reason for that is
the thread that owns the block with the moved object was busy with
compaction and could not reply to correction requests from other
threads. It happens because all blocks under compaction belong
to the same thread that performs the compaction. We intention-
ally configured CoRM to perform long compaction without breaks
to observe that scenario. During this long compaction, the thread
managed to deallocate 5794 blocks. The unavailability period could
be shorter if the compaction was configured with an upper bound
on the number of compacted blocks. The RDMA client, on the other
hand, does not observe the unavailability as it corrects the pointers
using ScanRead, which reads the whole block with a requested
object using RDMA and then scans it. After 8 seconds the RDMA
client managed to correct 77,000 indirect pointers. The RPC client
spends almost 9 seconds for all corrections. Overall, both clients
observe 5% performance drop during pointer correction.

Memory scan. In the second experiment (bottom sub-figure),
CoRM’s worker threads opt for scanning the whole block to find the
object requested using RPC. The RDMA client in this experiment
uses RPC to correct pointers, instead of ScanRead. Compared to
the previous experiment, the RCP client does not experience large
unavailability periods, showing a 22% slowdown in throughput due
to the fact that blocks under compaction are not readable during
object migration and remapping. Once the compaction finishes, the
client does not observe any significant performance drops even
using indirect pointers, since a small percentage of pointers were
indirect. In a similar experiment where all pointers are indirect (not
reported here), the client observed only 5% slowdown. The RDMA
client experiences performance degradation as it needs to issue an
RPC to correct pointers to moved objects. This approach is slower
than the one with ScanRead, which complies with our latency
experiments. Overall, DirectReads provides 1.6x faster performance
than RPC reads even in the presence of indirect pointers and when
CoRM performs compaction.

Conclusion.The current experiments show that CoRM’s pointer
correction introduces only a temporal slowdown of 5% on read per-
formance, whereas the use of indirection tables and RPCs has a
constant 40% slowdown since it prevents the use of one-sided RDMA
reads for fetching the data.



4.4 Compaction overheads and benefits
To enable its compaction strategy and reuse virtual addresses,

CoRM stores an object identifier with each object. The object iden-
tifiers serve two scopes: (1) they enable CoRM to find relocated
objects; (2) they allow detecting reads using pointers to relocated
objects (i.e., same offset, different object ID). The size of the object
identifiers determines the space-overhead per block and the capac-
ity of CoRM of compacting blocks with a large number of objects.
We define CoRM-n as the instance of CoRM using n bits for the
object identifiers. In this experiment, we study the effects of the
CoRM compaction strategy for synthetic and real-world workloads
using different object identifier sizes and comparing the results
with the compaction strategy proposed by Mesh.
4.4.1 Object identifiers overhead. Table 3 summarizes the space
overheads for different CoRM configurations for 1 MiB blocks,
which is the size of blocks in FaRM. In CoRM-0, object IDs are
disabled and the compaction strategy is based on object offsets, as
in Mesh. However, while the overhead of the object IDs is zero,
CoRM still stores the virtual block address in the header of each
object to be able to reuse virtual addresses (§3.3). Assuming a system
with 48-bit physical memory pointers and 20-bits aligned blocks,
the virtual block address that CoRM needs to store is 28 bits.

The CoRM’s compaction algorithm cannot compact blocks stor-
ing more objects than the ones that can be addressed with a given
identifier size. For example, CoRM-8, with 8 bits for object iden-
tifiers, can address up to 256 objects in a block, hence it cannot
be used for 1 MiB blocks storing 2 KiB objects, which can hold up
to 512 objects. To handle these cases, CoRM can be configured to
use a hybrid compaction scheme where class sizes that cannot be
compacted by CoRM-n are compacted with CoRM-0.

Mesh CoRM-0 CoRM-8 CoRM-12 CoRM-16
0 bits 28 bits 28+8 bits 28+12 bits 28+16 bits

Table 3: Memory overheads for different compaction algo-
rithms per object for 1 MiB blocks.

4.4.2 Synthetic traces. Figure 17 shows the amount of memory
currently allocated (i.e., active memory) after a sequence of mem-
ory operations. We generate synthetic traces that first allocate 8 M
objects of a given size (sub-figures) and then randomly deallocate
a fixed portion (x-axis) of them. We also plot the active memory
in case an ideal memory compactor, which always frees the non-
utilized memory, and in the case in which no compaction is per-
formed. We study the compaction capability of CoRM for 8, 12, and
16-bit object IDs and include the memory overhead introduced by
CoRM to store object IDs in the reported data.

As the object sizes increase, both Mesh and CoRM are able to
compact more memory. Mesh works effectively for large objects
with high fragmentation but incurs in many conflicts for smaller
messages and low deallocation rations. CoRM-8 and CoRM-12 per-
form always better than Mesh for the object sizes where they can
be applied (e.g., ≥ 4 KiB objects for CoRM-8). CoRM-16 matches the
ideal compactor already for 2 KiB objects and low deallocation rates
(i.e., 0.5): this is because larger object IDs reduce the probability
of conflict, hence increase the probability of compaction (object
IDs are randomly chosen). For 256-byte objects, CoRM-16 requires
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Figure 17: Active memory under synthetic workloads.
CoRM is configured with 1 MiB blocks.

more active memory than the non-compacting case. This overhead
comes from the fact that blocks with 256 byte objects have a very
high probability of collision in object identifiers. Therefore, CoRM’s
overheads overwhelm its compaction capabilities.
4.4.3 Redis traces. Redis [40] is a popular in-memory data struc-
ture server. We extract memory traces from the memefficency unit
test of the Redis test suite (v5.0.7). The traces are:
• redis-mem-t1: Default Redis configuration. It allocates 10’000 keys
of 8 bytes each with values of sizes ranging from 1 to 16 KiB.

• redis-mem-t2: Redis is configured as an LRU cache with a capacity
of 100 MiB. The trace first allocates 700,000 8-byte keys with
values of 150 bytes each; then allocates 170,000 8-byte keys with
values of size 300 bytes each.

• redis-mem-t3: Default Redis configuration. The trace allocates 5
keys containing data structures of 160 KiB each; then it allocates
50,000 keys with values of 150 bytes. It then removes 25,000 keys
from the last batch of allocated keys.

For each trace, we report memory usage for a time point when
the system had the highest fragmentation. To show the effects of
the number of threads on the active memory, we run the traces
multiple times, varying the number of threads used by the memory
allocator: i.e., these are the treads serving RPC requests in CoRM.
For each allocation request, the thread is selected randomly.

Vanilla CoRM. Figure 18 shows the memory usage of the Redis
traces under different compaction strategies. In this experiment,
CoRM disables compaction for blocks that can store more objects
than the ones that can be addressed with the given identifier size.
For reference, we include the active memory kept by an ideal com-
paction strategy and in case no compaction is performed. CoRM
introduces up to 4 MiB memory overhead (i.e., for CoRM-16) to
store object IDs. The reported data includes this overhead.

Redis workloads do not experience allocation spikes as in the
synthetic workload. Therefore, none of the algorithms can signif-
icantly reduce the active memory for a single-threaded allocator.
However, the traces exhibit high fragmentation due to the low usage
of some size classes. Depending on the trace, the difference in active
memory between 1-thread and 32-thread allocators ranges from 3x
to 12x. This increase of fragmentation is explained by the fact that
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Figure 18: Active memory under Redis workloads. CoRM is
configured with 1 MiB blocks.
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Figure 19: Active memory under Redis workloads. CoRM is
configured with 1 MiB blocks and in hybrid mode.

with more threads there is a higher possibility of conflicts (either
on the block IDs or on the offsets). The cases where Mesh performs
better than CoRM are the ones where CoRM cannot compact blocks
because of their large object count: e.g., corm-12 can compact only
blocks with objects larger than 256 bytes. With 16-bit per object ID,
CoRM-16 provides better memory efficiency for redis-mem-t1 and
redis-mem-t3. For redis-mem-2, Mesh manages to compact more
memory than CoRM-16. Also in this case, this happens because the
trace allocates objects that CoRM-16 cannot compact (i.e., 8 bytes,
while CoRM-16 can compact blocks with at least 16 bytes objects).
CoRM-20, which is not plotted here, manages to compact more
memory than Mesh since it supports the aforementioned size class.
This suggests that the object IDs should be tuned for particular
workloads in order to maximize memory efficiency.

Hybrid CoRM. To remove the negative effects of blocks that
cannot be compacted with a given object identifier size, we adopt
the hybrid compaction strategy described in §4.4.1. Figure 19 shows
the active memory kept by the different compaction strategies with
this setting, using the same Redis traces of Figure 18. The data shows
that hybrid configuration has better compaction performance com-
pared to pure CoRM and pure Mesh algorithms.

In all experiments, hybrid CoRM is at least as good as Mesh in
terms of active memory. For redis-mem-t1 and redis-mem-t2, CoRM-
16 provides an improvement of 12% and 5% over Mesh, respectively.
The key difference is that CoRM, other than being at least as good
as Mesh for memory compaction, it enables RDMA-accelerated
DSMs while being able to release and reuse virtual addresses.

Discussion. To take full advantage of CoRM’s compaction ca-
pabilities, users can tune object ID sizes for different size-classes,
according to the specific workloads. Ideally, applications would
label class sizes with an indication of how frequently they are used.

Highly-used classes would likely not benefit for compaction since
their frequent allocations and deallocations would already avoid
fragmentation. Instead, class types that are not frequently allocated,
can be managed by CoRM which will be able to compact them
while introducing a space overhead given by the object IDs. We
consider an auto-labeling strategy of class sizes as future work.

5 Related Work
RDMA-accelerated DSM systems: FaRM [14] is a distributed

memory computing platform that exploits RDMA to read remote
objects. FaRM does not support memory compaction and addresses
the problem of unpopular size-classes by pinning them to specific
thread allocators. While this solution mitigates memory fragmen-
tation due to unpopular size classes, it does not help to limit frag-
mentation due to allocation/deallocation spikes.

GAM [9] is a shared memory system that exploits RDMA to
accelerate its cache coherence protocol. Unlike FaRM, GAM does
not allow objects to be read using RDMA but it used RDMA for
updating its shared buffer state. Like FaRM, GAM does not support
memory compaction and can benefit from CoRM’s compaction
algorithm without compromising its RDMA functionalities.

RDMA-enabled systems with compaction: RamCloud [39]
and MICA [27] are key-value stores employing log-structured mem-
ory allocators to limit fragmentation. The main drawback of this
approach is that deleted objects occupy memory until they are
garbage-collected. To free a memory block, the garbage collector
copies alive objects from it to the tail block of the log-structured
memory. As objects frequently move in memory, RamCloud and
MICA use indirection tables. Therefore, MICA’s RDMA-accelerated
extension, HERD [19, 20], and RamCloud cannot directly access
objects using one-sided RDMA and focus on accelerating RPC calls.

6 Conclusion
We introduce CoRM, a prototype of a shared memory system

that employs RDMA to accelerate remote reads and, at the same
time, supports memory compaction to provide high memory ef-
ficiency. CoRM’s memory accesses are strongly consistent even
in the presence of concurrent compaction. CoRM shows the same
read throughput of other RDMA-accelerated DSMs like FaRM un-
der normal operations and it can quickly recover indirect pointers
created as a result of memory compaction. In case of fragmented
memory, CoRM is at least as good as Mesh in compacting mem-
ory, while saving up to 2.8x more memory w.r.t. Mesh in cases
where allocation/deallocation spikes occur for large objects. The
novel compaction algorithm of CoRM, based on object IDs instead
of offsets, does not use indirection tables and completely relies
on OS virtual address translation. All in all, CoRM fills a gap in
RDMA-accelerated shared memory systems by avoiding the need
for compromising memory efficiency for performance.
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