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ABSTRACT Knowledge graphs (KGs) have achieved significant attention in recent years, particularly
in the area of the Semantic Web as well as gaining popularity in other application domains such as data
mining and search engines. Simultaneously, there has been enormous progress in the development of
different types of heterogeneous hardware, impacting the way KGs are processed. The aim of this paper
is to provide a systematic literature review of knowledge graph hardware acceleration. For this, we present
a classification of the primary areas in knowledge graph technology that harnesses different hardware units
for accelerating certain knowledge graph functionalities. We then extensively describe respective works,
focusing on how KG related schemes harness modern hardware accelerators. Based on our review, we
identify various research gaps and future exploratory directions that are anticipated to be of significant
value both for academics and industry practitioners.

INDEX TERMS Knowledge Graphs, Semantic Web, Hardware Architectures, Systematic Literature
Review, Graph Algorithms, Heterogeneous Hardware, FPGA, GPU, ASIC, CPU

I. INTRODUCTION

KNOWLEDGE graphs (KG) are structured representa-
tions of information that are used to represent and

organize data in a way that is easily accessible and un-
derstandable. They are used in a variety of applications,
including information retrieval, natural language processing,
and artificial intelligence (AI) [1]–[6].

In the current era of data-centric ecosystems, it has become
vitally important to organize and represent the enormous
volume of knowledge appropriately. Recently, knowledge
graphs have risen as a powerful tool for representing com-
plex associations among entities and concepts across various
domains, enhancing semantic search. As these knowledge
graphs continue to grow in both scale and complexity, con-
ventional computing methods encounter difficulties in ef-
fectively processing and analysing them in real-time, and
addressing these challenges has prompted the investigation
of hardware acceleration as a potential solution.

Hardware acceleration involves harnessing the capabilities
of specialized hardware components designed to perform
specific tasks more efficiently than what would be possible

using a general-purpose Central Processing Unit (CPU), such
as Graphics Processing Units (GPUs) or Field Programmable
Gate Arrays (FPGAs). Both GPUs and FPGAs [7], [8] use
strategies such as optimized memory use and low-precision
arithmetic to accelerate computation, adding a boost to CPU
server engines. While hardware acceleration has demon-
strated remarkable success in various computational do-
mains, its impact on knowledge graph processing remains
relatively unexplored. Hardware acceleration has the poten-
tial to substantially enhance the performance of knowledge
graph applications, enabling quicker and more precise data
processing and analysis.

In this systematic literature review, we will examine the
applications and consequences of hardware acceleration on
knowledge graphs. We will review the existing literature on
this topic and identify the main findings and trends in the use
of hardware acceleration in knowledge graph applications.
We will also consider the potential benefits and drawbacks
of hardware acceleration, and we identify challenges and
opportunities for future research and development.
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II. OVERVIEW OF KNOWLEDGE GRAPHS
Knowledge Graphs (KGs) accumulate and convey knowl-
edge of the real world. They can effectively organize data
to represent complex information, so that it can be efficiently
and extensively explored in traditional and advanced appli-
cations, offering significant benefits for data exploitation in
creating new knowledge. Knowledge graphs have emerged as
an approach for the systematic representation of knowledge
of real-world entities in a machine-readable format [9].

A. REPRESENTATIONS
A knowledge graph is usually modeled using one of two
data representations [10]: the Labeled Property Graph (LPG),
also called property graph, and the Resource Description
Framework (RDF). The LPG model categorizes vertices and
edges with the help of labels and allows attributes for vertices
and edges in the form of key-value pairs as properties. RDF
represents knowledge graphs in the form of triples, where
each triple consists of a subject, a predicate, and an object.
Formally, edges are represented as triples (h, r, t), where h
and t are the head and tail entities, and r is the relation
between them.

Knowledge graphs, regardless of the used data model,
capture the relationships between entities and are composed
of entities (vertices, also referred to as nodes) and relation-
ships (edges), forming a graph structure that allows complex
interconnections and associations to be easily visualized and
understood.

B. EMBEDDINGS
The knowledge graph input is typically human-readable,
however certain tasks benefit from a transformed (embedded)
machine representation. Knowledge Graph Embedding
(KGE) models provide a way to represent entities (vertices)
and relations (edges) of a knowledge graph in vector spaces,
referred to as embeddings. These models capture the seman-
tics of the graph and are used in various downstream tasks
like link prediction, classification, and recommendation.

The goal of training a knowledge graph embedding model
is to learn embeddings for entities and relations such that the
embeddings of the head and tail entities are close to each
other in the embedding space when connected by a relation.
This is achieved by optimizing a loss function that captures
the likelihood of the observed triples in the graph. One
common approach is to train on both positive and negative
triples. A positive triple is an observed triple in the graph,
and a negative triple is a corrupted version of a positive triple.
The negative triples are sampled by replacing the head or tail
entity of a positive triple with another entity in the graph.

C. BENEFITS AND APPLICATIONS
The benefits of knowledge graphs are manifold. They provide
a structured and semantically rich representation of knowl-
edge, which can be leveraged for various applications. For
instance, KGs can be used to improve search engine results
by understanding the context and semantics behind a user’s

query. They can also be used in recommendation systems to
provide more personalized and context-aware recommenda-
tions [11].

In addition to these, knowledge graphs have been suc-
cessfully applied in numerous other domains. For instance,
in the pharmaceutical industry, KGs can be used to rep-
resent complex relationships between drugs, diseases, and
patients, thereby aiding in drug discovery and personalized
medicine [12], [13]. In the field of social sciences, knowledge
graphs can be used to analyze social networks and understand
the dynamics of social interactions [14]–[16].

In education, several knowledge graph-based applications
focus on supporting remote teaching and learning. For ex-
ample, considering the importance of course allocation tasks
in universities, a knowledge graph-based approach was pro-
posed to automate this task. One could construct a course
knowledge graph in which the entities are courses, lecturers,
course books, and authors in order to suggest relevant courses
to students [17]–[20].

In healthcare, the growth of the medical sector has led to
more options for treatments. To help with this, medical rec-
ommender systems, especially biomedical knowledge graph-
based recommender systems (such as doctor and medicine
recommender systems), have been developed. For instance,
in recommending medications, one can construct a hetero-
geneous graph whose nodes are medicines, diseases, and pa-
tients to recommend accurate and safe medicine prescriptions
for patients with complicated medical issues [21]–[29].

Various works also propose to enhance general gener-
ative models with knowledge graphs. The focus of these
works is usually to use KGs in order to enhance the LLM
answers, for example by grounding knowledge in general
models to reduce effects such as hallucinations [30]–[34].
Example schemes include Knowledge Graph Prompting
(KGP) [35], Graph Neural Prompting (GNP) [36], Think-on-
Graph (ToG) [37], Knowledge Solver (KSL) [38], Knowl-
edGPT [39], and others [40], [41]. Zhu et al. [42] discuss
how LLMs can be used for enhancing KG construction and
tasks. Wen et al. [43] present MindMap, a framework to
perform reasoning on KG data. Pertinent triples from a KG
are retrieved and the LLM is prompted to answer a question
based on these triples and show the reasoning process by
generating a “mind map” in the form of a textual reasoning
tree.

Retrieval Augmented Generation (RAG) enhances the
abilities of LLMs by enabling the retrieval of documents
into the LLM context to provide more accurate and rel-
evant responses. MRAG [44] focuses on the multi-aspect
problems where as structure-enhanced RAG schemes employ
different strategies for structuring text to improve retrieval
quality. A common idea is to construct a knowledge graph
from text, which enables retrieval amongst entities and re-
lationships [45]–[49]. RAPTOR [50] generates multi-level
summaries for clusters of related documents, building a tree
of summaries with increasing levels of abstraction to better
capture the meaning of the text. Graph RAG [51] creates a
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GPUs (§IV)

Advantages
- Massive parallelism
- Efficient memory management

Limitations
- Expensive hardware
- Limited memory capacity
- Complex to program

Use-Cases
- Knowledge graph embeddings
  (DGL-KE, GraphVite, Marius)
- Graph neural networks
  (TC-GNN, DiPAD, TinyKG)
- Graph analytics & mining
  (WikiSearch, SMORE, DSNAPSHOT)

FPGAs (§V)

Hardware Acceleration for Knowledge Graph Processing

Advantages
- High parallelism
- High configurability

Limitations
- Configuring FPGAs requires 
  HDL expertise which is not
  commonly available

Use-Cases
- Defect detection for software
- Updates in dynamic graphs
  (GraSU)
- Web-query composition & execution

RDMA (§VII)

Advantages
- Low-latency, high-bandwidth com-
 munication by bypassing OS & CPU

Limitations
- Increased complexity of
 programming and maintenance

Use-Cases
- Large-scale, distributed graph
  databases
  (CGE, A1, Wukong, RDMA_Mongo, 
  Nessie, HERD, HydraDB, InnerCache)

PIM (§VI)
PNM PUM

Advantages
- Minimized data movement

Advantages
- Execution units
  are tailored to
  each step

Advantages
- Can accelerate
  memory- and
  compute-bound
  workloads

Limitations
- Immature 
  technology

Limitations
- Unclear per-
  formance if me-
  mory exceeded

Use-Cases
- Matrix-matrix multiplication in
  graph neural networks (GNNs)

Opportunities for Future Research (§VIII)
- SmartNICs
- Tensor processing units (TPUs)
- AI accelerators

- Quantum computing
- Neuromorphic computing

- Cryogenic computing
- Chiplet architectures

- On-chip interconnects
- ASICs

FIGURE 1: Overview of different hardware acceleration areas used for knowledge graph processing.

knowledge graph, and summarizes communities in the graph,
which provide data at the different levels of abstraction.

D. CHALLENGES AND FUTURE DIRECTIONS
Despite their numerous benefits, knowledge graphs also pose
several challenges. Their heterogeneity, as mentioned earlier,
is one such challenge. It requires the development of sophis-
ticated techniques for KG embedding that can effectively
capture and preserve the diverse structures and semantics
inherent in the knowledge graphs [52].

Another challenge lies in the dynamic nature of knowl-
edge. As new information becomes available, KGs need to be
updated to reflect this new knowledge. This requires efficient
methods for knowledge graph updating and evolution [53].

Furthermore, the quality of the knowledge graph is heavily
dependent on the quality of the input data. Hence, ensuring
the accuracy and reliability of the data used to construct the
KG is another significant challenge [54], [55].

The existing methods for generating knowledge graph
embeddings still suffer several severe limitations. Many es-
tablished methods only consider surface facts (triplets) of
knowledge graphs. However, additional information, such as
entity types and relation paths, are ignored, which can further
improve the embedding accuracy. The performance of most
traditional methods that do not consider the additional in-
formation is unsatisfactory. Recently, some researchers have
started to combine additional information with a knowledge
graph to improve the efficiency of embedding models [56].

Finally, more efficient processing of KGs is of great rele-
vance, in the face of the ongoing growth of the dataset sizes.
One strategy for achieving more performance is incorporat-
ing hardware acceleration techniques.

III. OVERVIEW OF HARDWARE ACCELERATION
Hardware acceleration involves offloading specific computa-
tional tasks from the CPU to specialized hardware compo-
nents within a system, leading to more efficient task process-
ing. There are several kinds of hardware acceleration, includ-
ing GPU (Graphics Processing Unit) for graphics and parallel
tasks, DSP (Digital Signal Processor) for handling signals
like audio, FPGA (Field-Programmable Gate Array) which
can be customized for different uses after its production,
ASIC (Application-Specific Integrated Circuit) designed for
specific tasks, and NPU or AI Accelerators aimed at speeding
up machine learning tasks. Figure 1 presents an overview of
the covered hardware acceleration areas for knowledge graph
processing.

To facilitate hardware acceleration, various technologies
like CUDA by NVIDIA for general-purpose computing on
GPUs, OpenCL for programming diverse systems, DXVA
for hardware-accelerated video decoding, and WebGL for
web-based graphics are used. These tools enable improved
performance and energy efficiency, freeing up CPU resources
for other tasks and enhancing the user experience. However,
challenges such as compatibility issues, increased software
complexity, higher initial costs, and the risk of hardware
failure also arise. Despite these challenges, the benefits of
hardware acceleration, including better performance and ef-
ficiency, make it a key element in advancing technology,
especially as we move towards more specialized processing
tasks.

IV. GPUS & KNOWLEDGE GRAPHS
Graphics Processing Units (GPUs) have emerged as powerful
units for a multitude of computationally intensive tasks.
Initially made for gaming graphics, GPUs are now crucial in
many devices including smartphones, computers, and gam-
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ing consoles. Moreover, GPUs support massive parallelism,
making them ideal for tasks that require heavy computa-
tion, such as machine learning, scientific computing, and
cryptocurrency mining. They are now a key component in
supercomputers and data centers. Nine out of the ten top su-
percomputers in the TOP500 list are powered by GPUs [57].

A. FUNDAMENTAL GPU CONCEPTS
GPUs have several some key benefits that make them suitable
for accelerating knowledge graph applications. GPUs support
massive parallelism and excel at performing many opera-
tions simultaneously with thousands of cores, making them
ideal for processing large-scale knowledge graphs, execut-
ing graph algorithms, and training machine learning models
on knowledge graphs. Efficient memory management of
GPUs can greatly speed up the processing of knowledge
graphs. GPUs can use thread-level parallelism and employ
warp scheduling. Specifically, GPU threads are grouped
into warps, which are scheduled for execution together. By
carefully organizing threads that access adjacent graph nodes
or edges into the same warp (a technique known as “coalesc-
ing”), one can maximize memory access efficiency and mini-
mize warp divergence, leading to significant performance im-
provements. GPU frameworks often allow the asynchronous
execution of different operations, enabling the overlap of
computation and memory transfer to hide latencies and im-
prove throughput. Additionally, stream prioritization of op-
erations can ensure responsive interactive querying in knowl-
edge graph applications. Hardware-accelerated libraries
such as cuGraph [58] (from NVIDIA’s RAPIDS suite) pro-
vide GPU-accelerated graph analytics algorithms, which can
be used in knowledge graph applications. For deep learning
on knowledge graphs, libraries such as PyTorch Geometric
offer GPU-accelerated graph neural network layers.

B. KNOWLEDGE GRAPHS WITH GPUS
GPUs have been increasingly leveraged in knowledge graph
applications due to their capability for parallel processing in
two main areas. First, knowledge graphs are typically stored
and indexed using high-performance graph database engines.
Data analytics and machine learning techniques are applied
to data stored in graph databases by extracting relevant data
from the knowledge graphs using query languages (SPARQL
for RDF graphs and Cypher, Gremlin as well as others for
property graphs). A large body of work [59], [60] has focused
on accelerating graph databases and individual knowledge
graph queries using GPUs. Second, knowledge graphs are
employed to learn inductive information using either su-
pervised or unsupervised machine learning approaches. Re-
searchers have focused on the use of GPUs for accelerating
this learning process which we outline below.

1) Knowledge Graph Embeddings
Embedding matrices are large and they typically do not
fit into the limited GPU memory. A common approach to
address this challenge is to keep the embeddings in the main

memory and transfer them to the GPU memory as needed.
However, this results in severe latency penalties if GPUs
exchange data with the main memory frequently.

In a parallel setting where multiple workers together train
a model, the graph and the embeddings need to be parti-
tioned across workers. Depending on the partitioning strat-
egy, workers might need access to embeddings of entities and
relations that are not local to them. Workers also need to syn-
chronize their updates to the embedding matrices. Depending
on the sampling strategy employed, workers might require
further remote access for entities of negative triples. This
results in a high degree of communication between workers,
which can be a bottleneck in the training process.

Several works have explored parallel training of knowl-
edge graph embedding models on GPUs, tackling the above
challenges. DGL-KE [12] is a distributed training framework
for KGE models that uses a hybrid CPU-GPU system. It
employs a distributed key-value store for both the knowl-
edge graph structure and the embeddings, using shared CPU
memory. A GPU worker unit retrieves embeddings from CPU
memory, updates them, and then writes the embeddings back
to the CPU memory. In DGL-KE, the knowledge graph is
partitioned via METIS [61] such that most of the entity and
relation embeddings are local, in order to minimize commu-
nication between the compute units. GPUs are not efficient
in handling random memory access, and hence DGL-KE
samples the negative triples in the CPU, and then transfers
them to the GPU for training. This sampling is done from the
local METIS partition to ensure that there is no increase in
remote accesses for negative samples. Other optimizations in
DGL-KE include relation partitioning and overlap of gradient
updates for relation as well as entity embeddings.

GraphVite [62] focuses on multi-GPU training of KGE
models. In line with past works, it tackles the challenges of
limited GPU memory and bus bandwidth as well as synchro-
nization overhead. GraphVite partitions the embeddings in
a way that avoids CPU-GPU or inter-GPU communication
during training. Positive triples are partitioned so, that they
access pairwise disjoint embeddings, and negative triples are
sampled from the local partition. Workers perform mini-
batch updates on the local embeddings and synchronize only
at the end of an epoch.

Marius [63] is a framework designed for efficient compu-
tation of graph embeddings on a single machine by lever-
aging partition caching and buffer-aware data orderings to
minimize disk access and interleave data movement with
computation. The pipeline updates node embedding param-
eters in CPU memory asychronously, allowing for staleness,
while the relation embeddings are updated in GPU memory
synchronously. This design choice is based on the obser-
vation that updates to node embedding vectors are sparse,
whereas updates to relation embedding parameters are dense
due to the smaller number of edge-types in real-world graphs.

Another way to use GPUs for KGEs is to transform the
knowledge graph completion problem into a similarity join
problem, which can be efficiently processed by GPUs. This
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method can leverage the metric properties of some KGE
models, such as TransE [64] and RotatE [65], to reduce
the number of vector operations and filter out irrelevant
candidates. By using GPUs, this method can achieve fast
and accurate knowledge graph completion on large-scale
datasets [66].

2) Graph Neural Networks
A graph neural network (GNN) [67] is a neural network
in which input samples are graphs. GNNs, as opposed to
embeddings, support end-to-end learning. Thus, GNNs can
be used to solve various KG-related tasks like link prediction,
knowledge graph alignment, and node classification [68].
GPUs can accelerate the computation of GNNs by exploiting
the parallelism and locality of graph operations and utilizing
the specialized hardware features of GPUs. For example, TC-
GNN [69] proposes the use of tensor cores to accelerate
sparse matrix multiplication in GNNs by transforming the
sparse graph data into dense tensors. PiPAD [70] proposes
to use pipelining and parallelism techniques to improve the
efficiency and scalability of dynamic GNN training on GPUs.

Traditional KGE methods mainly focus on predicting the
legitimacy between two entities and a particular relation type.
GNNs have been shown to be effective in capturing the topo-
logical features of entities such as shapes of neighborhood
sub-graphs which are overlooked by the traditional KGE
methods [71]. However, their model complexity is higher in
terms of the number of trainable parameters.

Sheikh et al. [72] propose three key strategies to scale
GNNs to large knowledge graphs. Their system leverages
vertex-cut partitioning to create self-sufficient graph sections
and employs local negative sampling within partitions, sig-
nificantly reducing communication overhead. It also utilizes
edge mini-batch training, allowing efficient handling of large
graph sections on GPUs.

TinyKG [73] is a a memory-efficient framework for train-
ing Knowledge Graph Neural Networks. Traditional training
of these networks is memory-intensive due to the need to
store all intermediate activation maps for gradient computa-
tion, making deployment challenging in memory-constrained
environments. TinyKG addresses this by using exact ac-
tivations during the forward pass and storing a quantized
version in the GPU buffers. During the backward pass, these
quantized activations are dequantized for gradient compu-
tation. TinyKG employs a simple quantization algorithm to
compress activations, reducing the training memory footprint
with minimal accuracy loss.

3) Symbolic Learning and Rule Mining
Machine learning techniques that learn numerical models are
hard to interpret and quantify. Instead, symbolic learning
can be used to learn hypotheses in a logical (symbolic)
language that “explains” sets of positive and negative edges.
Such hypotheses are interpretable and quantifiable (e.g., “all
airports are domestic or international”), partially addressing
the out-of-vocabulary issue. Symbolic learning techniques

such as rule and pattern mining are used to discover inter-
esting patterns over knowledge graph data. GPUs can exploit
features of rule mining algorithms for more performance,
for example frequent itemset generation, candidate pruning,
support counting, and confidence evaluation. There exists a
large body of work that focuses on accelerating rule mining
specifically, and frequent itemset mining more generally,
using GPUs. Most of them focus on accelerating the under-
lying algorithm like Apriori [74] that is widely used for rule
mining. We refer the reader to a recent survey [75] of several
GPU accelerated frequent itemset mining solutions proposed
in literature for further reference.

4) Graph Analytics and Mining
The application of analytical methods to large-scale graphs
is known as graph analytics. Such algorithms frequently
examine the graph topology, or how nodes and groups of
nodes are related. GPUs can accelerate a wide range of graph
algorithms such as breadth-first search (BFS), single-source
shortest path (SSSP), and community detection [60].

WikiSearch [76] is an efficient parallel keyword search
engine designed for large-scale knowledge graphs, with a fo-
cus on the Wikidata Knowledge Base, though it is applicable
to other knowledge graphs as well. To exploit parallelism, a
novel approach for keyword search based on the central graph
method is proposed. Unlike traditional methods that approx-
imate the group Steiner tree problem, this approach can nat-
urally operate in parallel and returns compact, information-
rich answer graphs. It is optimized for both multi-core CPU
and GPU architectures. WikiSearch also introduces a novel
pruning strategy based on keyword co-occurrence to refine
search results further.

Scalable Multi-hOp REasoning (SMORE) [77] is a
framework for both single-hop knowledge graph completion
and multi-hop reasoning on large knowledge graphs, that
involves predicting answers to queries that span multiple
relations or hops in the graph, which requires capturing com-
plex dependencies and performing logical operations over
entities and relations. The computational complexity for such
tasks increases significantly with the number of hops, leading
to higher memory requirements and processing times. For a
massive knowledge graph containing hundreds of millions of
entities, it is not feasible to materialize training instances, and
training data needs to be efficiently sampled on the fly with
high throughput to ensure efficient utilization of computation
resources. SMORE addresses this with a novel bidirectional
rejection sampling approach for efficient online training data
generation and an asynchronous system design that overlaps
data sampling, embedding computation, and CPU-GPU com-
munication. Also, graph partitioning is not feasible for multi-
hop reasoning, as it requires traversing multiple relations in
the graph, which will often span across multiple partitions.
SMORE is designed to operate in a shared memory envi-
ronment, bypassing the limitations of graph partitioning in
multi-hop reasoning, and demonstrates near-linear speed-up
with the number of GPUs used for training.
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In the field of biomedicine, the connections among various
biomedical entities, including drugs, diseases, symptoms,
proteins, and genes play a crucial role in understanding the
underlying mechanisms of diseases and drugs. Biomedical
knowledge graphs play an important role in representing
these connections and are used in various applications such
as drug discovery and repurposing. Distributed Accelerated
Semiring All-Pairs Shortest Path (DSNAPSHOT) [78] is a
scalable knowledge graph analytics system that can perform
all-pairs shortest path (APSP) computation on large biomed-
ical knowledge graphs. It exploits the relation between the
semiring GEMM [79] and the APSP computation, and im-
plements a GPU-optimized distributed semiring GEMM ker-
nel, the key operation in the Floyd-Warshall algorithm for
APSP computation. Further, DSNAPSHOT proposes opti-
mizations for both inter-node and intra-node communication,
and achieves 90% parallel efficiency on the Summit super-
computer.

5) Graph Visualization
Due to high dimensionality, heterogeneity, and sparsity of
data, displaying knowledge graphs might be difficult. By
offering parallel computing capability, high memory band-
width, and specialized hardware characteristics for graph-
ics tasks, GPUs can make it possible for large-scale graph
data to be rendered and processed more quickly, thereby
speeding up knowledge graph visualization. One such ex-
ample is KG4Vis [80], a knowledge graph-based approach
for visualization recommendation. It uses a TransE-based
embedding technique to learn the embeddings of both entities
and relations of the knowledge graph from existing dataset-
visualization pairs. Such embeddings intrinsically model the
desirable visualization rules and can be accelerated by GPUs.

C. CHALLENGES & LIMITATIONS
As knowledge graphs continue to grow in size and complex-
ity, GPUs will likely play an increasingly important role in
managing and extracting value from these datasets. However,
GPUs also have several disadvantages that might make them
unsuitable for some knowledge graph applications.

The cost of high-performance GPUs can be steep, which
can be a barrier to their use, especially for small organiza-
tions or individual developers. GPUs have their own onboard
memory, which is typically much less than the main memory
available to a CPU. While this memory is typically faster, the
limited memory capacity can be a challenge when working
with large datasets that do not fit into the GPU’s memory.
GPUs are more complex to program than CPUs. Writing
code that effectively leverages the parallel processing ca-
pabilities of a GPU can require a different approach than
what many developers are accustomed to [81]. GPUs often
use more power and generate more heat than CPUs, which
can lead to additional hardware requirements regarding
power supply and cooling in a computer system. Not all
tasks can be effectively parallelized and see benefits from
a GPU [82]. Tasks with heavy data dependencies or those

that are inherently sequential may not see a performance
improvement on a GPU, and might even be slower than on a
CPU. Such limited tasks may benefit from applying a hybrid
(CPU+GPU) processing strategy [83].

Hence, it is worth noting that not all knowledge graph
tasks can benefit from GPU acceleration. Certain operations,
such as graph updates or graph schema modifications, may
not be well-suited for GPU parallelism. The effectiveness of
GPU acceleration will ultimately depend on specific graph
algorithms, data sizes, and hardware configurations. Thus,
concrete benchmarking and microarchitectural analysis of
various knowledge graph-related tasks is required to under-
stand the degree to which each task can benefit from GPU
acceleration.

V. FPGAS & KNOWLEDGE GRAPHS
Field-Programmable Gate Arrays (FPGAs) have emerged
as integral components in contemporary digital electronics,
facilitating the development of custom digital circuits with
a degree of versatility unmatched by other devices. Charac-
terized by arrays of programmable logic blocks and config-
urable interconnects, FPGAs offer a distinctive combination
of adaptability and performance.

A. FUNDAMENTAL FPGA CONCEPTS
The cornerstone of any FPGA, logic elements and logic
blocks comprise arrays of both combinational and sequen-
tial circuit elements. Programmable in nature, they can be
tailored to execute a myriad of logical functions, laying the
groundwork for the vast functionalities FPGAs are known
for. The pathways of configurable interconnects serve a
pivotal role in an FPGA’s architecture, facilitating signal
routing across the device. Their adaptability ensures seamless
communication between discrete segments of a given design,
optimizing the device’s functionality. A quintessential aspect
of an FPGA’s reprogrammability is its configuration mem-
ory. This component retains the user-defined design logic,
effectively determining the FPGA’s operational behavior.
Acting as the interface between the FPGA and its external
environment, I/O blocks are instrumental in the device’s
ability to both send and receive signals, thereby ensuring ef-
fective communication with other devices or components. In
light of the stringent timing constraints often associated with
FPGA applications, effective clock distribution and man-
agement are paramount. Mastery over clock management
is crucial for the successful deployment of FPGA-based
designs. Analogous to programming languages in the realm
of software development, Hardware Description Language
(HDL) such as VHDL and Verilog as well as, more recently,
other abstractions such as High-Level Synthesis (HLS) [84]
are employed to define and describe circuit behavior within
an FPGA.

B. KNOWLEDGE GRAPHS WITH FPGAS
FPGAs have been increasingly utilized for knowledge graph
processing due to their high parallelism and configurabil-
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ity, which can significantly enhance the efficiency of graph
computations. FPGAs can be used to accelerate various
graph processing tasks, including defect detection in software
code [85], high-throughput updates on dynamic graphs [86],
efficient traversal of edge-labeled directed graphs [87] and
automated composition and execution of Semantic Web
queries [88]. FPGAs have also been used for implementing
various graph algorithms, such as BFS or PageRank [89]–
[91].

Different techniques have been employed to optimize the
use of FPGAs for knowledge graph processing. For in-
stance, GraSU [86], an FPGA library designed for the Xilinx
Alveo™ U250 accelerator card, exploits the spatial similar-
ity of graph updates to improve overall efficiency. GraSU
outperformed two state-of-the-art CPU-based dynamic graph
systems significantly in terms of update throughput. Another
technique involves the use of a pipeline approach that com-
bines parallel BFS and nondeterministic finite automaton for
efficient graph traversal [87]. Additionally, the use of partial
runtime-reconfiguration enables transparent query evaluation
on an FPGA [88].

Several specific schemes and mechanisms have been de-
veloped to optimize the use of FPGAs for knowledge graph
processing. For instance, a work-stealing-based scheduler,
HWS [92], has been designed to optimize workload balance
on heterogeneous CPU-FPGA systems. Another example is
the implementation of a stochastic matrix function estimator
on FPGAs to boost the performance and energy efficiency
of subgraph centrality computations [93], [94]. Furthermore,
an accelerator for quantized Graph Convolutional Networks
(GCNs) with edge-level parallelism has been developed,
using low-precision integer arithmetic during inference [95],
which demonstrated significant speedups and energy savings
compared to other models.

C. ADVANTAGES & DISADVANTAGES

FPGAs offer several advantages for semantic knowledge
graph processing. They provide high parallelism and config-
urability, which can significantly enhance the efficiency of
graph computations [85]. FPGAs can also provide significant
speedups and energy savings compared to other models [95].
Despite the advantages offered by FPGAs and their rapid
growth, the use of FPGA technology is restricted to a nar-
row segment of hardware programmers due to their code
written differently using a hardware description language to
design the FPGA configuration. The challenge with the HDL
approach is that configuring an FPGA requires both coding
skills and a detailed knowledge of the underlying hardware,
and the required expertise is not widely available. More
recent abstractions such as HLS [84], [96]–[100] attempt to
alleviate these issues. Additionally, while FPGAs can provide
significant performance improvements for certain tasks, they
may not benefit all queries [88].

VI. PROCESSING-IN-MEMORY & KNOWLEDGE GRAPHS
Processing-In-Memory (PIM) is a promising way to alleviate
the data movement bottleneck [101], [102], i.e., the waste
of execution cycles and energy due to moving data between
memory/storage and compute units, in current processor-
centric computing systems (e.g., CPU, GPU).

A. FUNDAMENTAL PIM CONCEPTS
There are two main PIM trends. The first one is called
Processing-Near-Memory (PNM) and consists of placing
compute logic near the memory arrays (e.g., DRAM subar-
rays, banks, ranks) [103]–[109]. Processing-Using-Memory
(PUM) is the other one, which leverages the analog opera-
tional properties of memory components (e.g., cells, sense
amplifiers) to perform computation [110]–[114]. PIM repre-
sents a successful research trend in recent years, and several
commercial PIM systems and prototypes [115]–[125] have
been presented.

B. KNOWLEDGE GRAPHS WITH PIM
Graph Neural Networks use deep learning to process graph
data, including knowledge graphs [126]. GNNs can solve
different knowledge graph tasks, such as link prediction,
knowledge graph alignment and reasoning, and node classifi-
cation [68]. There are several classes of GNNs: GCNs [127],
attentional GNNs [128] and message-passing GNNs [129].
GCNs are composed of several GCN layers, each com-
puting two steps: the aggregation of vertex features (a re-
duce operation), and a combination of features (an update
operation with typically fully-connected layers). After the
loss computation, the backward pass is composed of fea-
ture/weight gradients computation (update), and feature gra-
dients aggregation (reduce). While update operations (e.g.,
matrix multiplication) are compute-bound, reduce operations
(e.g, gather-reduce-scatter) are very memory-bound. As such,
reduce operations are good candidates for PIM-based ac-
celeration. Several recent works [130]–[134] propose PIM
acceleration for GCNs. Some of these works deploy PUM
techniques such as ReRAM-based crossbars [131], [133].
Other works use PNM techniques with processing units in
DDR DIMMs [130], [134] and in HBM stacks [132].

PUM approaches rely on crossbar arrays, which help
minimizing data movement in reduce operations, and com-
puting matrix multiplication efficiently. ReFlip [133] pro-
poses a unified crossbar-based PUM architecture that sup-
ports both compute-bound and memory-bound kernels. With
software/hardware co-optimizations, ReFlip maps both types
of kernels efficiently onto the massive parallelism of its
ReRAM-based crossbar arrays. COIN [131] targets the huge
communication overheads of GCNs. For example, processing
the Nell [135] knowledge graph causes 2.7TB of data moving
between nodes of a baseline crossbar-based PUM archi-
tecture. COIN proposes an optimized on-chip interconnec-
tion network for efficient communication between compute
elements and between the crossbars inside each compute
element. The network design is applicable to different cross-
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bars such as ReRAM- and SRAM-based, but COIN prefers
ReRAM, which is significantly more energy efficient.

PNM approaches combine heterogeneous computing units
that are specialized for different steps. GNNear [134] inte-
grates an ASIC with matrix multiply and vector processing
units and PNM-enabled DIMMs. Update operations are com-
puted on the ASIC, while execution units in the buffer chip
of the DIMMs compute reduce operations. Huang et al. [130]
tackle the large memory footprint and data movement needs
of GNNs with memory pooling. The authors propose a cus-
tomized memory fabric interface for low-latency and high-
throughput communication across PNM units in memory ex-
tension cards. The PNM units contain a RISC-V core, a ma-
trix multiply unit, and a vector processing unit. SGCN [132]
exploits the sparse nature of intermediate GCN features to
reduce the memory footprint (via compression) and optimize
communication. SGCN places aggregation units (with SIMD
MACs) and combination units (with a systolic array for
matrix multiplication) near HBM memory.

C. ADVANTAGES AND DISADVANTAGES
PUM approaches for GNNs offer the advantage that the same
crossbar-based PUM unit can accelerate both memory-bound
and compute-bound kernels. Their main disadvantage is that
they are based on memory technologies that are not yet
mature (e.g., limited endurance and high area of ADCs in
ReRAM and other non-volatile memories).

PNM approaches tailor their execution units to the specific
needs of each step, which represents an advantage of their
approach. However, they have yet to show how their per-
formance would scale for knowledge graphs exceeding their
memory capacity.

While the aforementioned works show great promise for
GCN acceleration, their evaluations are all based on sim-
ulation. We hope to see soon efficient implementations of
GNNs on existing real-world PIM architectures [115]–[125]
and future ones.

VII. CLUSTER-LEVEL RDMA & KNOWLEDGE GRAPHS
Remote Direct Memory Access (RDMA) is a mechanism
for achieving high performance and scalability in both the
supercomputing as well as the cloud data center land-
scapes [136]–[151]. RDMA has grown popular as RDMA-
enabled network interface cards have become widely used,
and is commonly supported in modern interconnects [152],
[153]. Overall, RDMA has many use-cases, particularly in
distributed environment. Examples include speeding up data
replication [154]–[158], transactions [10], [159]–[162], in-
dex queries [163], file systems [164], general queries [165]–
[167], or analytical workloads [10], [126], [168]–[176].

A. FUNDAMENTAL RDMA CONCEPTS
In general, the advantages of RDMA stem from the fact that
communication bypasses the OS and the CPU, reducing or
eliminating overheads such as interrupts. While one can har-
ness RDMA in different ways, highest performance is usually

achieved with fully-offloaded one-sided communication. In
this approach, processes communicate by directly accessing
dedicated portions of other processes’ memory. In the es-
tablished one-sided communication specification included in
the Message-Passing Interface [177], this portion is called a
window.

One-sided accesses are done with communication oper-
ations referred to as puts and gets. They – respectively –
write to and read from windows, offering very low latencies
and most often outperform other communication paradigms
such as message passing [137]. Other useful RDMA oper-
ations include remote atomics such as Compare-and-Swap
or Fetch-and-Add [176]–[179] that are often accelerated by
the interconnect hardware. They enable very fast fine-grained
synchronization. To enforce data consistency between win-
dows, operations called flushes are employed to explicitly
synchronize memories. The communication operations come
in two variants, blocking (operation execution blocks till
completion) and non-blocking (operation execution returns
immediately upon initiating communication). The latter can
additionally increase performance by overlapping communi-
cation and computation [137], with the user taking respon-
sibility to synchronize memories at some point after starting
the call. All of these routines are supported by most RDMA
architectures.

B. KNOWLEDGE GRAPHS WITH RDMA
Cray Graph Engine (CGE) [180], [181] is a system de-
veloped by Cray to support executing very large-scale RDF
triple stores on top of Cray high-performance computing
systems. CGE’s design is based on the Partitioned Global
Address Space (PGAS) abstraction, in which one creates a
single logical memory pool encompassing all the physical
distributed memories over all compute nodes. Thus, CGE
effectively implements the Single Program Multiple Data
(SPMD) model and uses a purely one-sided RMA pro-
gramming model, where memory access is treated as effec-
tively uniform (i.e., at the programming level, one does not
distinguish between local or remote accesses). Hence, one
does not need to consider problems such as efficient graph
partitioning. Simultaneously, to achieve high performance,
CGE heavily relies on different hardware features offered by
the targeted systems. Such features include latency hiding,
passive parallelism, and high network throughput for small
remote requests that occur commonly in the targeted graph
workloads. For example, one of the architectures used in the
evaluation, the XMT2 system, used the Threadstorm pro-
cessors with 128 hardware streams per node. For the whole
system of a typical size (64–512 nodes), this amounts to a
total of thousands to tens of thousands of software threads
that can be used in a given single graph query. Finally, the
CGE implementation relies on a low-level high-performance
networking communication library [182] by Cray.

Improvements for graph analytics queries [183] with CGE
were made by the use of non-blocking communication for
large exchanges and by processing intermediate solutions
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in stages to exploit locality. Additional recent improve-
ments [184] make CGE more portable by replacing low-level
DMAPP operations with one-sided MPI routines, as well
as simplifying the software stack. Several optimizations are
employed to enable container performance matching that of
native execution. Message-aggregation within each compute
node is employed for join/scan/merge operations to reduce
the number of messages. That number is further reduced by
improving the communication patterns to enable storing of
messages for the same compute node consecutively. Distinct
flushes for put and get operations improve the overlap of
computation and communication.

A1 [185] is a distributed in-memory graph database de-
veloped by Microsoft. It adds graph abstraction and query
engine layers on top of an improved FaRM key-value
store [160]. FaRM already comes with transaction support
and uses one-sided read and write operations as well as RPCs
to implement its functionality. A1 further improves FaRMs
transactions by employing an optimistic multi-version con-
currency control scheme by introducting a global clock and
timestamps. RDMA is implemented with the RoCEv2 pro-
tocol [186] and DCQCN is used for congestion control.
RDMA-based unreliable datagrams are used for clock syn-
chronization and leases. A1 is latency-optimized by em-
ploying data structures, which reduce the number of read
operations, co-locating data likely to be requested at the same
time like nodes and their edges as well as RPC aggregation
to reduce the number of messages. A1 uses a semi-structured
data model based on Bond [187] with strictly-typed edges
and weakly-typed nodes.

Wukong [188] is a research-oriented distributed in-
memory RDF triple store. Its storage layer is implemented
using a simplified version of a RDMA-friendly distributed
hashtable based on DrTM-KV [159]. Wukong duplicates
edges during graph partitioning to store self-contained sub-
graphs on each compute node to preserve locality. It sup-
ports indices based on type and predicate. These indices are
treated as a special kind of nodes and are usually replicated.
Strings are stored separately and mapped to unique IDs
to reduce network bandwidth. Wukong supports concurrent
query execution with full history pruning, data (in-place)
and/or execution (fork/join) migration as well as task stealing
for load balancing and to reduce query latency. Originally
providing limited update support, Wukong spawned several
improved implementations. Wukong+S [189] adds support
for stream queries as well as incremental key-value up-
dates. Wukong+G [190] uses GPUs to further improve query
throughput by using the GPU memory as cache as well as the
massive compute power of GPUs for triple parsing. Adaptive
query scheduling was further proposed [191] for Wukong+G
to combine the processing of multiple queries similar to the
fusion of kernels.

RDMA_Mongo [192], a document-oriented NoSQL
database, uses RDMA writes to replace part of its TCP/IP-
communication layer. Nessie [193], a key-value store, uses
cuckoo hashing with RDMA for its key-value operations.

Nessie decouples index and data storage to improve local-
ity. HERD [140], another key-value store, uses one-sided
RDMA writes and two-sided RDMA send/receives to com-
plete each of its operations with a single network round trip.
The key-value store HydraDB [139] uses RDMA to accel-
erate its read operations and key caches with timestamps to
reduce network pressure for highly skewed workloads. Simi-
larly, InnerCache [194] uses one-sided RDMA to accelerate
reads from the key-value store acting as an application cache
and two-sided semantics for writing data. RDMA-based
Memcached has been used for the integration of the Hadoop
storage layer (HDFS) with the underlying high performance
parallel filesystem Lustre to improve the I/O performance of
big data analytics [195]. Additionally a non-blocking API
extension for Memcached to improve communication and
computation overlap as well as an enhanced runtime design
for hybrid use with SSDs was proposed [196].

Finally, the Graph Database Interface (GDI) [170] has
recently been proposed to deliver a toolbox for designing a
scalable and high-performance data access and transaction
layer for general graph databases that can also be used to
maintain knowledge graphs. Its RDMA-based implementa-
tion, GDI-RMA [171], has been shown to scale to more
than a hundred thousand compute cores and to label- and
property-rich graphs with more than 500 billion edges. The
key mechanisms used for high performance are one-sided
non-blocking RDMA communication, hardware-accelerated
network atomic operations, and collective communication,
a form of group communication that has been tuned over
decades by the MPI community [177].

C. ADVANTAGES AND DISADVANTAGES
RDMA usually enables significant performance advantages
in terms of both latency and bandwidth. The former is en-
abled by eliminating expensive parts of the communication
pipeline (such as interrupts) and by supporting features such
as network-accelerated atomic operations. The latter is fa-
cilitated by features such as the overlap of computation and
communication. On the other hand, RDMA is usually more
complex to program and maintain. This, however, has been
alleviated with efforts such as the one-sided communication
within MPI [137], [177] or by GDI [170], [171].

VIII. FUTURE RESEARCH OPPORTUNITIES
We identified four research gaps in current solutions, that
provide opportunities for future studies: scalability, energy
efficiency, real-time processing and the integration with other
technologies.

While current hardware solutions have shown promise in
handling large-scale knowledge graphs, there is a pressing
need to address the scalability challenges posed by the
ever-growing size and complexity of semantic data. The en-
ergy consumption of hardware accelerators, especially when
processing extensive knowledge graphs, remains a concern.
Research into more energy-efficient hardware designs is
crucial. The ability to process and update knowledge graphs
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in real-time, especially in dynamic environments, is still an
area with limited research.

The synergy between different forms of hardware acceler-
ation and other technologies is not fully explored. Existing
works, such as DaCe [197], [198], focus on effective and
efficient execution of different workloads on the underly-
ing diverse hardware, targeting – among others – machine
learning [199], linear algebra kernels [200], and – more
recently – GNNs [201]. Extending this line of works towards
knowledge graphs specifically is an interesting research op-
portunity. Another, related, opportunity is to combine this
approach with other emerging technologies, such as quantum
computing or neuromorphic computing.

In conclusion, while significant strides have been made
in the domain of hardware-accelerated semantic knowledge
graph processing, there remains a vast landscape of uncharted
territory. By addressing the identified research gaps and
capitalizing on the highlighted opportunities, the scientific
community can pave the way for more efficient, scalable, and
innovative solutions in the future.

A. NOVEL HARDWARE ACCELERATION SCHEMES
Beyond the hardware acceleration techniques previously
mentioned, there are several innovative hardware solutions
that can enhance knowledge graph processing.

SmartNICs are advanced network interface cards (NICs)
that allow the processing of tasks on the NIC [202] instead of
the CPU. For load balancing in distributed settings, Smart-
NICs can distribute incoming queries to different servers to
ensure efficient utilization of resources. They can also be
used in the context of data preprocessing, where SmartNICs
preprocess and filter irrelevant data, therefore speeding up the
data ingestion process of the knowledge graph.

Originally designed for machine learning, Tensor Pro-
cessing Units (TPUs) can also be harnessed for knowledge
graph tasks that incorporate machine learning. TPUs can
accelerate the training and inference of GNNs to be used for
node and graph classification as well as link prediction in
knowledge graphs. TPUs can also compute efficiently node
and edge embeddings for similarity searches and clustering
in knowledge graphs.

Additionally various AI accelerators, such as Google’s
Edge TPU and Intel’s Nervana Neural Network Processor,
can process knowledge graphs in order to detect anoma-
lies or inconsistencies to guarantee data integrity. Google’s
Edge TPU can be used on edge devices to locally update a
knowledge graph as new data streams in to ensure that graph
processing remains current.

Quantum Computing is an emerging field with the poten-
tial to redefine computing. For knowledge graph processing
it holds the promise of more efficient computation for various
algorithms such as graph isomorphism, i.e. determining if
two graphs are structurally identical, or pathfinding (finding
the shortest path or optimal connections between nodes).

Inspired by the human brain, Neuromorphic Comput-
ing can be advantageous for traditionally challenging tasks.

Neuromorphic chips can help to identify patterns or trends
in knowledge graphs and can aide in tasks like recommen-
dation systems or predictive analytics. Similar as a human
brain learns from experience, neuromorphic computing can
adaptively learn from data in the knowledge graphs and refine
queries and results over time.

Utilizing superconducting circuits that function at ultra-
low temperatures, Cryogenic Computing, though in its in-
fancy, has potential for large-scale knowledge graph process-
ing tasks. At extremely low temperatures, superconducting
circuits can process vast amounts of data simultaneously,
which allows for massive parallel processing of large-scale
knowledge graph analytics, where multiple queries and com-
putations are performed concurrently. Cryogenic computing
can also offer significant energy savings, making the process-
ing more sustainable and cost-effective.

Chiplet architectures [203], where multiple silicon dies
are integrated into a single package, have gained signif-
icant traction in the chip design industry [204]. Chiplets
come with a wide range of benefits, including modularity,
reusability, flexibility, specialization, cost-efficiency and re-
duced time-to-market. Even though we are not aware of any
chiplet-based accelerators specifically designed to process
knowledge graph, chiplets have played an important role
in knowledge graph processing. A team of researchers was
elected as Gordon Bell Prize [205] finalists for running
their COAST (communication-optimized all-pairs shortest
path) [206] algorithm for knowledge graphs on Frontier, the
world’s first exascale supercomputer, which uses chiplet-
based AMD EPYC CPUs [207], [208]. There is also a variety
of propositions for chiplet-based accelerators for general
graph processing [209]–[212], which hints for a large po-
tential of leveraging their modularity and cost-efficiency for
hardware accelerators tailored to knowledge graph process-
ing.

As the number of compute cores in modern processors
and accelerators is steadily increasing, networks-on-chips
(NoCs) have emerged as a scalable On-Chip Interconnect
solutions. In a NoC, data packets are sent through a series of
links and routers, akin to computer networks [213]. The de
facto standard topology for NoCs is a 2D mesh [214], [215],
however, more elaborate topologies such as Slim NoC [216]
or sparse Hamming graphs [217] have been proposed. Most
accelerators for graph processing rely on these mesh topolo-
gies [218], [219], while some hardware architects argue
that a mesh is not suitable for graph algorithms, as these
algorithms often cause data movement between physically
distant cores. One approach to tackle this challenge is the use
of small-world networks [220] as NoC topologies for graph
processing accelerators [221], [222]. We believe that there is
significant value in a thorough investigation of traffic caused
by knowledge graph processing and a subsequent evaluation
of NoC topologies for knowledge graph accelerators.

Application-Specific Integrated Circuits (ASICs) mark a
transformative shift in VLSI design, enabling systems to be
embedded within single chips rather than assembled from
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multiple components [223]. This evolution, akin to the earlier
microprocessor revolution, not only reshapes the electron-
ics industry’s design and manufacturing strategies but also
interconnects designers, CAE tool developers, and ASIC
vendors in intricate ways. Broadly, ASIC covers a spectrum
from programmable logic devices (PLD) to gate arrays (GA),
standard cells (SC), and full custom (FC) designs, with GA
and SC being the most commonly referenced. We find it
surprising that there are no works on designing ASICs for
knowledge graphs, beyond the PIM-related works; it consti-
tites a promising direction of future development.

IX. CONCLUSION
In this paper, we explore hardware acceleration for knowl-
edge graph applications. We review the existing literature,
identify main designs and trends in that area, benefits and
drawbacks of hardware acceleration, as well as the challenges
and opportunities for future research and development. We
consider GPUs, FPGAs, Processing-In-Memory, RDMA,
and other forms of acceleration. Our work can help design
more efficient KG processing schemes.
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J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria,
L. Gianinazzi, I. Stefan, J. G. Luna, J. Golinowski, M. Copik, L. Kapp-
Schwoerer, S. Di Girolamo, N. Blach, M. Konieczny, O. Mutlu, and
T. Hoefler, “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems,” in Proceedings of the
54th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’21. Virtual Event, Greece: Association for Computing
Machinery, Oct. 2021, pp. 282–297. [Online]. Available: https:
//doi.org/10.1145/3466752.3480133

[105] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen,
C.-Y. Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. Fleischer,
T. W. Fox, D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob,
P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno, J. K.

14

https://doi.org/10.1145/3332466.3374533
https://doi.org/10.1145/3332466.3374533
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1117/12.2601619
http://www.injoit.org/index.php/j1/article/view/761
https://ceur-ws.org/Vol-1987/paper15.pdf
https://doi.org/10.1145/3200691.3178527
https://ieeexplore.ieee.org/document/9786986
https://ieeexplore.ieee.org/document/9786986
https://doi.org/10.1145/3431920.3439288
https://doi.org/10.1109/BigData55660.2022.10020406
https://ieeexplore.ieee.org/document/7238078
https://doi.org/10.1145/3199523
https://link.springer.com/article/10.1007/s11390-019-1914-z
https://link.springer.com/article/10.1007/s11390-019-1914-z
https://arxiv.org/abs/1903.06697
https://arxiv.org/abs/1903.06697
https://doi.org/10.1145/3404397.3404433
https://ieeexplore.ieee.org/document/7577350
https://ieeexplore.ieee.org/document/7577350
https://ieeexplore.ieee.org/document/7482073
https://doi.org/10.1016/j.sysarc.2022.102596
https://doi.org/10.1145/3373087.3375296
https://ieeexplore.ieee.org/document/9355265
https://ieeexplore.ieee.org/document/9355265
https://doi.org/10.1145/3508352.3549374
https://ieeexplore.ieee.org/document/9786219
https://doi.org/10.1007/978-981-16-7487-7_7
https://ieeexplore.ieee.org/document/8792187
https://ieeexplore.ieee.org/document/9563028
https://doi.org/10.1145/3466752.3480133
https://doi.org/10.1145/3466752.3480133


Besta et al.: Hardware Acceleration for Knowledge Graph Processing: Challenges & Recent Developments

O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and
Z. Sura, “Active Memory Cube: A Processing-in-Memory Architecture
for Exascale Systems,” IBM Journal of Research and Development,
vol. 59, no. 2/3, pp. 17:1–17:14, Mar. 2015. [Online]. Available:
https://ieeexplore.ieee.org/document/7095154

[106] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo, “McDRAM v2:
In-Dynamic Random Access Memory Systolic Array Accelerator to
Address the Large Model Problem in Deep Neural Networks on the
Edge,” IEEE Access, vol. 8, pp. 135 223–135 243, 2020. [Online].
Available: https://ieeexplore.ieee.org/document/9146167

[107] A. Denzler, G. F. Oliveira, N. Hajinazar, R. Bera, G. Singh, J. Gómez-
Luna, and O. Mutlu, “Casper: Accelerating Stencil Computations Using
Near-Cache Processing,” IEEE Access, vol. 11, pp. 22 136–22 154, 2023.
[Online]. Available: https://ieeexplore.ieee.org/document/10058509

[108] G. F. Oliveira, J. Gómez-Luna, L. Orosa, S. Ghose, N. Vijaykumar,
I. Fernandez, M. Sadrosadati, and O. Mutlu, “DAMOV: A New
Methodology and Benchmark Suite for Evaluating Data Movement
Bottlenecks,” IEEE Access, vol. 9, pp. 134 457–134 502, 2021. [Online].
Available: https://ieeexplore.ieee.org/document/9530719

[109] C. Giannoula, N. Vijaykumar, N. Papadopoulou, V. Karakostas,
I. Fernandez, J. Gómez-Luna, L. Orosa, N. Koziris, G. Goumas, and
O. Mutlu, “SynCron: Efficient Synchronization Support for Near-Data-
Processing Architectures,” in Proceedings of the IEEE International
Symposium on High-Performance Computer Architecture, ser. HPCA
’21. Virtual Event, South Korea: IEEE Press, Mar. 2021, pp. 263–276.
[Online]. Available: https://ieeexplore.ieee.org/document/9407213

[110] L. Orosa, Y. Wang, M. Sadrosadati, J. S. Kim, M. Patel, I. Puddu,
H. Luo, K. Razavi, J. Gómez-Luna, H. Hassan, N. Mansouri-Ghiasi,
S. Ghose, and O. Mutlu, “CODIC: A Low-Cost Substrate for Enabling
Custom In-DRAM Functionalities and Optimizations,” in Proceedings
of the ACM/IEEE 48th Annual International Symposium on Computer
Architecture, ser. ISCA ’21. Virtual Event: IEEE Press, Jun. 2021,
pp. 484–497. [Online]. Available: https://ieeexplore.ieee.org/document/
9499751

[111] Y. Xi, B. Gao, J. Tang, A. Chen, M.-F. Chang, X. S. Hu, J. Van
Der Spiegel, H. Qian, and H. Wu, “In-Memory Learning With Analog
Resistive Switching Memory: A Review and Perspective,” Proceedings
of the IEEE, vol. 109, no. 1, pp. 14–42, Jan. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9138706

[112] P. Girard, Y. Cheng, A. Virazel, W. Zhao, R. Bishnoi, and M. B. Tahoori,
“A Survey of Test and Reliability Solutions for Magnetic Random Access
Memories,” Proceedings of the IEEE, vol. 109, no. 2, pp. 149–169, Feb.
2021. [Online]. Available: https://ieeexplore.ieee.org/document/9240959

[113] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand,
J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’17. Cambridge, MA, USA: Association for Computing
Machinery, Oct. 2017, pp. 273–287. [Online]. Available: https:
//doi.org/10.1145/3123939.3124544

[114] N. Hajinazar, G. F. Oliveira, S. Gregorio, J. a. D. Ferreira,
N. M. Ghiasi, M. Patel, M. Alser, S. Ghose, J. Gómez-Luna, and
O. Mutlu, “SIMDRAM: A Framework for Bit-Serial SIMD Processing
Using DRAM,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’21. Association for Computing
Machinery, Apr. 2021, pp. 329–345. [Online]. Available: https:
//doi.org/10.1145/3445814.3446749

[115] J. Gómez-Luna, Y. Guo, S. Brocard, J. Legriel, R. Cimadomo,
G. F. Oliveira, G. Singh, and O. Mutlu, “Evaluating Machine
Learning Workloads on Memory-Centric Computing Systems,” in
Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software, ser. ISPASS ’23. Raleigh,
NC, USA: IEEE Press, Apr. 2023, pp. 35–49. [Online]. Available:
https://ieeexplore.ieee.org/document/10158216

[116] M. Item, J. Gómez-Luna, Y. Guo, G. F. Oliveira, M. Sadrosadati,
and O. Mutlu, “TransPimLib: Efficient Transcendental Functions
for Processing-in-Memory Systems,” in Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and
Software, ser. ISPASS ’23. Raleigh, NC, USA: IEEE Press, Apr. 2023,
pp. 235–247. [Online]. Available: https://ieeexplore.ieee.org/document/
10158230

[117] S. Diab, A. Nassereldine, M. Alser, J. Gómez-Luna, O. Mutlu,
and I. El Hajj, “A Framework for High-throughput Sequence
Alignment using Real Processing-in-Memory Systems,” Bioinformatics,
vol. 39, no. 5, pp. 1–8, May 2023. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btad155

[118] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas,
and O. Mutlu, “SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Architectures,” Proc.
ACM Meas. Anal. Comput. Syst., vol. 6, no. 1, pp. 21:1–21:49, Feb.
2022. [Online]. Available: https://doi.org/10.1145/3508041

[119] J. Gómez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F.
Oliveira, and O. Mutlu, “Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System,”
IEEE Access, vol. 10, pp. 52 565–52 608, 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9771457

[120] D. Niu, S. Li, Y. Wang, W. Han, Z. Zhang, Y. Guan, T. Guan, F. Sun,
F. Xue, L. Duan, Y. Fang, H. Zheng, X. Jiang, S. Wang, F. Zuo,
Y. Wang, B. Yu, Q. Ren, and Y. Xie, “184QPS/W 64Mb/mm2 3D
Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine
for Recommendation System,” in Proceedings of the IEEE International
Solid-State Circuits Conference, ser. ISSCC ’22, vol. 65. San
Francisco, CA, USA: IEEE Press, Feb. 2022, pp. 1–3. [Online].
Available: https://ieeexplore.ieee.org/document/9731694

[121] S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park,
K. Kang, J. Kim, J. Jeon, N. Kim, Y. Kwon, K. Vladimir, W. Shin,
J. Won, M. Lee, H. Joo, H. Choi, J. Lee, D. Ko, Y. Jun, K. Cho,
I. Kim, C. Song, C. Jeong, D. Kwon, J. Jang, I. Park, J. Chun, and
J. Cho, “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-
Memory supporting 1TFLOPS MAC Operation and Various Activation
Functions for Deep-Learning Applications,” in Proceedings of the IEEE
International Solid-State Circuits Conference, ser. ISSCC ’22, vol. 65.
San Francisco, CA, USA: IEEE Press, Feb. 2022, pp. 1–3. [Online].
Available: https://ieeexplore.ieee.org/document/9731711

[122] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho,
J. H. Kim, Y. Kwon, K. Kim, J. Jung, I. Yun, S. J. Park, H. Park, J. Song,
J. Cho, K. Sohn, N. S. Kim, and H.-H. S. Lee, “Near-Memory Processing
in Action: Accelerating Personalized Recommendation with AxDIMM,”
IEEE Micro, vol. 42, no. 1, pp. 116–127, Jan. 2022. [Online]. Available:
https://ieeexplore.ieee.org/document/9489313

[123] D. Lee, J. So, M. AHN, J.-G. Lee, J. Kim, J. Cho, R. Oliver, V. C.
Thummala, R. s. JV, S. S. Upadhya, M. I. Khan, and J. H. Kim,
“Improving In-Memory Database Operations with Acceleration DIMM
(AxDIMM),” in Proceedings of the 18th International Workshop on Data
Management on New Hardware, ser. DaMoN ’22. Philadelphia, PA,
USA: Association for Computing Machinery, Jun. 2022, pp. 2:1–2:9.
[Online]. Available: https://doi.org/10.1145/3533737.3535093

[124] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon,
S. Lee, K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang,
K. Sohn, and N. S. Kim, “Hardware Architecture and Software
Stack for PIM Based on Commercial DRAM Technology: Industrial
Product,” in Proceedings of the ACM/IEEE 48th Annual International
Symposium on Computer Architecture, ser. ISCA ’21. Virtual
Event: IEEE Press, Jun. 2021, pp. 43–56. [Online]. Available:
https://ieeexplore.ieee.org/document/9499894

[125] Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son,
O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim, Y. Cho, J. G. Kim, J. Choi, H.-S.
Shin, J. Kim, B. Phuah, H. Kim, M. J. Song, A. Choi, D. Kim, S. Kim, E.-
B. Kim, D. Wang, S. Kang, Y. Ro, S. Seo, J. Song, J. Youn, K. Sohn, and
N. S. Kim, “25.4 A 20nm 6GB Function-In-Memory DRAM, Based on
HBM2 with a 1.2 TFLOPS Programmable Computing Unit Using Bank-
Level Parallelism, for Machine Learning Applications,” in Proceedings
of the IEEE International Solid-State Circuits Conference, ser. ISSCC
’21, vol. 64. Virtual Event: IEEE Press, Feb. 2021, pp. 350–352.
[Online]. Available: https://ieeexplore.ieee.org/document/9365862

[126] M. Besta and T. Hoefler, “Parallel and Distributed Graph Neural
Networks: An In-Depth Concurrency Analysis,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 46, no. 5, pp.
2584–2606, May 2024. [Online]. Available: https://doi.org/10.1109/
TPAMI.2023.3303431

[127] T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proceedings of the 5th International
Conference on Learning Representations, ser. ICLR ’17, Toulon,
France, Apr. 2017, pp. 1–14. [Online]. Available: https://openreview.net/
forum?id=SJU4ayYgl

15

https://ieeexplore.ieee.org/document/7095154
https://ieeexplore.ieee.org/document/9146167
https://ieeexplore.ieee.org/document/10058509
https://ieeexplore.ieee.org/document/9530719
https://ieeexplore.ieee.org/document/9407213
https://ieeexplore.ieee.org/document/9499751
https://ieeexplore.ieee.org/document/9499751
https://ieeexplore.ieee.org/document/9138706
https://ieeexplore.ieee.org/document/9240959
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/3445814.3446749
https://doi.org/10.1145/3445814.3446749
https://ieeexplore.ieee.org/document/10158216
https://ieeexplore.ieee.org/document/10158230
https://ieeexplore.ieee.org/document/10158230
https://doi.org/10.1093/bioinformatics/btad155
https://doi.org/10.1093/bioinformatics/btad155
https://doi.org/10.1145/3508041
https://ieeexplore.ieee.org/document/9771457
https://ieeexplore.ieee.org/document/9731694
https://ieeexplore.ieee.org/document/9731711
https://ieeexplore.ieee.org/document/9489313
https://doi.org/10.1145/3533737.3535093
https://ieeexplore.ieee.org/document/9499894
https://ieeexplore.ieee.org/document/9365862
https://doi.org/10.1109/TPAMI.2023.3303431
https://doi.org/10.1109/TPAMI.2023.3303431
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl


Besta et al.: Hardware Acceleration for Knowledge Graph Processing: Challenges & Recent Developments
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[200] G. Kwaśniewski, M. Kabic, T. Ben-Nun, A. N. Ziogas, J. E. Saethre,
A. Gaillard, T. Schneider, M. Besta, A. Kozhevnikov, J. VandeVondele,
and T. Hoefler, “On the Parallel I/O Optimality of Linear Algebra
Kernels: Near-Optimal Matrix Factorizations,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’21. St. Louis, MO, USA: Association for
Computing Machinery, Nov. 2021, pp. 70:1–70:15. [Online]. Available:
https://doi.org/10.1145/3458817.3476167

[201] J. Bazinska, A. Ivanov, T. Ben-Nun, N. Dryden, M. Besta, S. Shen,
and T. Hoefler, “Cached Operator Reordering: A Unified View for
Fast GNN Training,” Aug. 2023, arXiv:2308.12093. [Online]. Available:
https://arxiv.org/abs/2308.12093

[202] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R. Brightwell,
“sPIN: High-performance streaming Processing In the Network,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. Denver,
CO, USA: Association for Computing Machinery, Nov. 2017, pp. 59:1–
59:16. [Online]. Available: https://doi.org/10.1145/3126908.3126970

[203] T. Li, J. Hou, J. Yan, R. Liu, H. Yang, and Z. Sun, “Chiplet
Heterogeneous Integration Technology—Status and Challenges,”
Electronics, vol. 9, no. 4, pp. 670:1–670:12, 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/4/670

[204] J. H. Lau, “Chiplet Heterogeneous Integration,” in Semiconductor
Advanced Packaging. Springer Singapore, May 2021, pp. 413–439.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-981-
16-1376-0_9

[205] G. Bell, D. H. Bailey, J. Dongarra, A. H. Karp, and K. Walsh,
“A Look Back on 30 Years of the Gordon Bell Prize,” The
International Journal of High Performance Computing Applications,
vol. 31, no. 6, pp. 469–484, Nov. 2017. [Online]. Available:
https://journals.sagepub.com/doi/abs/10.1177/1094342017738610

[206] R. Kannan, P. Sao, H. Lu, J. Kurzak, G. Schenk, Y. Shi, S. Lim,
S. Israni, V. Thakkar, G. Cong, R. Patton, S. E. Baranzini, R. Vuduc,
and T. Potok, “Exaflops Biomedical Knowledge Graph Analytics,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’22. Dallas,
TX, USA: IEEE Press, Nov. 2022, pp. 6:1–6:11. [Online]. Available:
https://ieeexplore.ieee.org/document/10046083

[207] G. H. Loh, M. J. Schulte, M. Ignatowski, V. Adhinarayanan, S. Aga,
D. Aguren, V. Agrawal, A. M. Aji, J. Alsop, P. Bauman, B. M.
Beckmann, M. V. Beigi, S. Blagodurov, T. Boraten, M. Boyer,
W. C. Brantley, N. Chalmers, S. Chen, K. Cheng, M. L. Chu,

18

https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG10CD/pages/1-program/final_program/CUG10_Proceedings/pages/authors/01-5Monday/03B-tenBruggencate-Paper-2.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap179s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap179s2-file1.pdf
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap114s2-file1.pdf
https://cug.org/proceedings/cug2021_proceedings/includes/files/pap114s2-file1.pdf
https://doi.org/10.1145/3318464.3386135
https://github.com/microsoft/bond
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://doi.org/10.1145/3132747.3132777
https://www.usenix.org/conference/atc18/presentation/wang-siyuan
https://www.usenix.org/conference/atc18/presentation/wang-siyuan
https://ieeexplore.ieee.org/document/9582823
https://www.sciencedirect.com/science/article/abs/pii/S0020025519305869
https://www.sciencedirect.com/science/article/abs/pii/S0020025519305869
https://ieeexplore.ieee.org/document/7987083
https://ieeexplore.ieee.org/document/7987083
https://ieeexplore.ieee.org/document/7558060
https://ieeexplore.ieee.org/document/7558060
https://ieeexplore.ieee.org/document/7349583
https://ieeexplore.ieee.org/document/7516035
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3579990.3580018
https://doi.org/10.1145/3579990.3580018
https://doi.org/10.1145/3524059.3532364
https://doi.org/10.1145/3458817.3476167
https://arxiv.org/abs/2308.12093
https://doi.org/10.1145/3126908.3126970
https://www.mdpi.com/2079-9292/9/4/670
https://link.springer.com/chapter/10.1007/978-981-16-1376-0_9
https://link.springer.com/chapter/10.1007/978-981-16-1376-0_9
https://journals.sagepub.com/doi/abs/10.1177/1094342017738610
https://ieeexplore.ieee.org/document/10046083


Besta et al.: Hardware Acceleration for Knowledge Graph Processing: Challenges & Recent Developments

D. Cownie, N. Curtis, J. Del Pino, N. Duong, A. Duundefinedu,
Y. Eckert, C. Erb, C. Freitag, J. L. Greathouse, S. Gurumurthi,
A. Gutierrez, K. Hamidouche, S. Hossamani, W. Huang, M. Islam,
N. Jayasena, J. Kalamatianos, O. Kayiran, J. Kotra, A. Lee, D. Lowell,
N. Madan, A. Majumdar, N. Malaya, S. Manne, S. Mashimo,
D. McDougall, E. Mednick, M. Mishkin, M. Nutter, I. Paul,
M. Poremba, B. Potter, K. Punniyamurthy, S. Puthoor, S. E.
Raasch, K. Rao, G. Rodgers, M. Scrbak, M. Seyedzadeh, J. Slice,
V. Sridharan, R. van Oostrum, E. van Tassell, A. Vishnu, S. Wasmundt,
M. Wilkening, N. Wolfe, M. Wyse, A. Yalavarti, and D. Yudanov, “A
Research Retrospective on AMD’s Exascale Computing Journey,” in
Proceedings of the 50th Annual International Symposium on Computer
Architecture, ser. ISCA ’23. Orlando, FL, USA: Association for
Computing Machinery, Jun. 2023, pp. 81:1–81:14. [Online]. Available:
https://doi.org/10.1145/3579371.3589349

[208] S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony,
and S. White, “Pioneering Chiplet Technology and Design for the AMD
EPYC™ and Ryzen™ Processor Families,” in Proceedings of the 48th
Annual International Symposium on Computer Architecture, ser. ISCA
’21. Virtual Event, Spain: IEEE Press, Jun. 2021, pp. 57–70. [Online].
Available: https://doi.org/10.1109/ISCA52012.2021.00014

[209] M. Orenes-Vera, E. Tureci, D. Wentzlaf, and M. Martonosi,
“Massive Data-Centric Parallelism in the Chiplet Era,” Aug. 2023,
arXiv:2304.09389. [Online]. Available: https://arxiv.org/abs/2304.09389

[210] S. Pal, J. Liu, I. Alam, N. Cebry, H. Suhail, S. Bu, S. S.
Iyer, S. Pamarti, R. Kumar, and P. Gupta, “Designing a 2048-
Chiplet, 14336-Core Waferscale Processor,” in Proceedings of the 58th
ACM/IEEE Design Automation Conference, ser. DAC ’21. Virtual
Event: IEEE Press, Dec. 2021, pp. 1183–1188. [Online]. Available:
https://ieeexplore.ieee.org/document/9586194

[211] A. Narayan, Y. Thonnart, P. Vivet, C. F. Tortolero, and A. K. Coskun,
“WAVES: Wavelength Selection for Power-Efficient 2.5D-Integrated
Photonic NoCs,” in Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, ser. DATE ’19. Grenoble,
France: IEEE Press, Mar. 2019, pp. 516–521. [Online]. Available:
https://ieeexplore.ieee.org/document/8715036

[212] A. Narayan, Y. Thonnart, P. Vivet, A. Joshi, and A. K. Coskun,
“System-Level Evaluation of Chip-Scale Silicon Photonic Networks for
Emerging Data-Intensive Applications,” in Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, ser. DATE ’20.
Grenoble, France: IEEE Press, Mar. 2020, pp. 1444–1449. [Online].
Available: https://ieeexplore.ieee.org/document/9116496

[213] W. J. Dally and B. Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks,” in Proceedings of the 38th Annual
Design Automation Conference, ser. DAC ’01. Las Vegas, NV,
USA: IEEE Press, Jun. 2001, pp. 684–689. [Online]. Available:
https://ieeexplore.ieee.org/document/935594

[214] E. Salminen, A. Kulmala, and T. D. Hämäläinen, “Survey of Network-
on-Chip Proposals,” Tampere University of Technology, Tech. Rep., Mar.
2008.

[215] Y. Wu, C. Lu, and Y. Chen, “A Survey of Routing Algorithm for
Mesh Network-on-Chip,” Frontiers of Computer Science, vol. 10, no. 4,
pp. 591–601, Aug. 2016. [Online]. Available: https://link.springer.com/
article/10.1007/s11704-016-5431-8

[216] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun, O. Mutlu,
and T. Hoefler, “Slim NoC: A Low-Diameter On-Chip Network
Topology for High Energy Efficiency and Scalability,” SIGPLAN
Not., vol. 53, no. 2, pp. 43–55, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3296957.3177158

[217] P. Iff, M. Besta, M. Cavalcante, T. Fischer, L. Benini, and
T. Hoefler, “Sparse Hamming Graph: A Customizable Network-
on-Chip Topology,” in Proceedings of the 2023 60th ACM/IEEE
Design Automation Conference, ser. DAC ’23. San Francisco,
CA, USA: IEEE Press, Jul. 2023, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/DAC56929.2023.10247754

[218] P. Yao, L. Zheng, Y. Huang, Q. Wang, C. Gui, Z. Zeng, X. Liao, H. Jin,
and J. Xue, “ScalaGraph: A Scalable Accelerator for Massively Parallel
Graph Processing,” in Proceedings of the IEEE International Symposium
on High-Performance Computer Architecture, ser. HPCA ’22. Virtual
Event, South Korea: IEEE Press, Apr. 2022, pp. 199–212. [Online].
Available: https://ieeexplore.ieee.org/document/9773208

[219] A. Auten, M. Tomei, and R. Kumar, “Hardware Acceleration of Graph
Neural Networks,” in Proceedings of the 57th ACM/IEEE Design
Automation Conference, ser. DAC ’20. Virtual Event: IEEE Press, Jun.

2020, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/
9218751

[220] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ’Small-World’
Networks,” Nature, vol. 393, no. 6684, pp. 440–442, Jun. 1998. [Online].
Available: https://www.nature.com/articles/30918

[221] D. Choudhury, R. Barik, A. S. Rajam, A. Kalyanaraman, and P. P. Pande,
“Software/Hardware Co-design of 3D NoC-based GPU Architectures for
Accelerated Graph Computations,” ACM Trans. Des. Autom. Electron.
Syst., vol. 27, no. 6, pp. 61:1–61:22, Jun. 2022. [Online]. Available:
https://doi.org/10.1145/3514354

[222] K. Duraisamy, H. Lu, P. P. Pande, and A. Kalyanaraman, “High-
Performance and Energy-Efficient Network-on-Chip Architectures for
Graph Analytics,” ACM Trans. Embed. Comput. Syst., vol. 15, no. 4,
pp. 66:1–66:26, Sep. 2016. [Online]. Available: https://doi.org/10.1145/
2961027

[223] S. Leung, P. Fisher, and M. Shanblatt, “A Conceptual Framework for
ASIC Design,” Proceedings of the IEEE, vol. 76, no. 7, pp. 741–755, Jul.
1988. [Online]. Available: https://ieeexplore.ieee.org/document/7141

19

https://doi.org/10.1145/3579371.3589349
https://doi.org/10.1109/ISCA52012.2021.00014
https://arxiv.org/abs/2304.09389
https://ieeexplore.ieee.org/document/9586194
https://ieeexplore.ieee.org/document/8715036
https://ieeexplore.ieee.org/document/9116496
https://ieeexplore.ieee.org/document/935594
https://link.springer.com/article/10.1007/s11704-016-5431-8
https://link.springer.com/article/10.1007/s11704-016-5431-8
https://doi.org/10.1145/3296957.3177158
https://doi.org/10.1109/DAC56929.2023.10247754
https://ieeexplore.ieee.org/document/9773208
https://ieeexplore.ieee.org/document/9218751
https://ieeexplore.ieee.org/document/9218751
https://www.nature.com/articles/30918
https://doi.org/10.1145/3514354
https://doi.org/10.1145/2961027
https://doi.org/10.1145/2961027
https://ieeexplore.ieee.org/document/7141

	Introduction
	Overview of Knowledge Graphs
	Representations
	Embeddings
	Benefits and Applications
	Challenges and Future Directions

	Overview of Hardware Acceleration
	GPUs & Knowledge Graphs
	Fundamental GPU Concepts
	Knowledge Graphs with GPUs
	Knowledge Graph Embeddings
	Graph Neural Networks
	Symbolic Learning and Rule Mining
	Graph Analytics and Mining
	Graph Visualization

	Challenges & Limitations

	FPGAs & Knowledge Graphs
	Fundamental FPGA Concepts
	Knowledge Graphs with FPGAs
	Advantages & Disadvantages

	Processing-In-Memory & Knowledge Graphs
	Fundamental PIM Concepts
	Knowledge Graphs with PIM
	Advantages and Disadvantages

	Cluster-level RDMA & Knowledge Graphs
	Fundamental RDMA Concepts
	Knowledge Graphs with RDMA
	Advantages and Disadvantages

	Future Research Opportunities
	Novel Hardware Acceleration Schemes

	Conclusion
	REFERENCES

