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Abstract
We introduce Graph of Thoughts (GoT): a framework that
advances prompting capabilities in large language models
(LLMs) beyond those offered by paradigms such as Chain-of-
Thought or Tree of Thoughts (ToT). The key idea and primary
advantage of GoT is the ability to model the information gen-
erated by an LLM as an arbitrary graph, where units of infor-
mation (“LLM thoughts”) are vertices, and edges correspond
to dependencies between these vertices. This approach en-
ables combining arbitrary LLM thoughts into synergistic out-
comes, distilling the essence of whole networks of thoughts,
or enhancing thoughts using feedback loops. We illustrate
that GoT offers advantages over state of the art on different
tasks, for example increasing the quality of sorting by 62%
over ToT, while simultaneously reducing costs by >31%.
We ensure that GoT is extensible with new thought transfor-
mations and thus can be used to spearhead new prompting
schemes. This work brings the LLM reasoning closer to hu-
man thinking or brain mechanisms such as recurrence, both
of which form complex networks.

1 Introduction
Large language models (LLMs) are taking over the world of
AI. Recent years saw a rapid development of models primar-
ily based on the decoder-only Transformer variant (Vaswani
et al. 2017), such as GPT (Radford et al. 2018, 2019; Bubeck
et al. 2023; Brown et al. 2020), PaLM (Chowdhery et al.
2022), or LLaMA (Touvron et al. 2023b).

Prompt engineering is a resource-efficient approach for
solving different LLM tasks. In brief, one includes the task
description within the input sent to an LLM. If this descrip-
tion is appropriately formulated, the LLM solves the task
using its autoregressive token-based mechanism for gener-
ating text. Such prompts may contain example tasks with
solutions (few-shot prompting, also referred to as in-context
learning (ICL)), or even no example tasks at all (zero-shot
prompting). In recent years it was shown that this mecha-
nism can be used to solve a broad set of tasks that involve
mathematical, commonsense, or symbolic reasoning.

Chain-of-Thought (CoT) (Wei et al. 2022) is an approach
for prompting, in which one includes the intermediate steps
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of reasoning within the prompt (intermediate “thoughts”),
besides the task input/output. CoT was shown to signif-
icantly improve the capability of LLMs to solve prob-
lems without resorting to any model updates. One major
improvement over CoT, Self-Consistency with CoT (CoT-
SC) (Wang et al. 2023b), is a scheme where multiple CoTs
are generated, and then the best one is selected as the out-
come. More recently, CoT and CoT-SC were extended with
Tree of Thoughts (ToT) (Long 2023; Yao et al. 2023a; Xie
et al. 2023), which models the LLM reasoning process with
a tree. This facilitates using different paths of thoughts, and
offers novel capabilities such as backtracking from non-
promising outcomes. Unfortunately, the ToT approaches still
fundamentally limit the reasoning abilities within a prompt
by imposing the rigid tree structure on the thought process.

In this work, we argue that fundamentally more power-
ful prompting can be achieved by enabling LLM thoughts to
form an arbitrary graph structure. This is motivated by nu-
merous phenomena such as human reasoning, brain struc-
ture, or algorithmic execution. When working on a novel
idea, a human would not only follow a chain of thoughts
(as in CoT) or try different separate ones (as in ToT), but
would actually form a more complex network of thoughts.
For example, one could explore a certain chain of reason-
ing, backtrack and start a new one, then realize that a certain
idea from the previous chain could be combined with the
currently explored one, and merge them both into a new so-
lution, taking advantage of their strengths and eliminating
their weaknesses. Similarly, brains form complex networks,
with graph-like patterns such as recurrence (Friston 2008).
Executing algorithms also expose networked patterns, often
represented by Directed Acyclic Graphs. The correspond-
ing graph-enabled transformations bring a promise of more
powerful prompting when applied to LLM thoughts, but they
are not naturally expressible with CoT or ToT.

We observe that these (and many other) thought trans-
formations can be naturally enabled when modeling the
reasoning process of an LLM as a graph. For this, we
propose Graph of Thoughts (GoT)1, an approach that en-
hances LLMs’ capabilities through networked reasoning
(contribution #1). In GoT, an LLM thought is modeled
as a vertex, while an edge is a dependency between such

1Extended Technical Report: https://arxiv.org/abs/2308.09687
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thoughts. Using GoT, one can aggregate arbitrary thoughts
by constructing vertices that have more than one incom-
ing edge. Overall, the graph abstraction harnessed by GoT
seamlessly generalizes CoT and ToT to more complex
thought patterns, without resorting to any model updates.

Yet, putting GoT to practice requires solving several de-
sign challenges. For example, what is the best graph struc-
ture for different tasks? How to best aggregate thoughts to
maximize accuracy and minimize cost? To answer these and
many other questions, we carefully design a modular archi-
tecture2 for implementing GoT (contribution #2), coming
with two design highlights. First, we enable a fine-grained
control over individual thoughts. This enables us to fully
control the ongoing conversation with the LLM, and apply
advanced thought transformations, such as combining most
promising thoughts from the ongoing reasoning into a new
one. Second, we ensure that our architecture can be seam-
lessly extended with novel thought transformations, patterns
of reasoning (i.e., graphs of thoughts), and LLM models.
This enables rapid prototyping of novel prompting ideas us-
ing GoT, while experimenting with different models such as
GPT-3.5, GPT-4, or Llama 2 (Touvron et al. 2023a).

We illustrate several use cases for GoT (sorting, keyword
counting for summaries, set operations, document merging)
and we detail how to implement them using the graph-based
paradigm (contribution #3). We evaluate GoT and show its
advantages over the state of the art (contribution #4). Over-
all, we observe that GoT is particularly well-suited for tasks
that can be naturally decomposed into smaller subtasks that
are solved individually and then merged for a final solution.
Here, GoT outperforms other schemes, for example improv-
ing upon CoT and ToT by, respectively, ≈70% and ≈62%,
in terms of the quality of sorting, while simultaneously re-
ducing costs by >31% over ToT.

We qualitatively compare GoT to other prompting
schemes3 in Table 1. GoT is the only one to enable arbitrary
graph-based thought transformations within a prompt, such
as aggregation, embracing all previously proposed schemes.

Finally, we propose a new metric for evaluating a prompt-
ing strategy, the volume of a thought (contribution #5).
With this metric, we aim to understand better the differences
between prompting schemes. For a given thought v, the vol-
ume of v is the number of LLM thoughts, from which one
can reach v using directed edges. Intuitively, these are all
the LLM thoughts that have had the potential to contribute
to v. We show that GoT, by incorporating thought transfor-
mations such as aggregation, enables thoughts to have fun-
damentally larger volumes than other schemes.

2Website & Code: https://github.com/spcl/graph-of-thoughts
3Note that we do not include a recent scheme called Graph-of-

Thought (Yao, Li, and Zhao 2023) because it is not a prompting
scheme. While its name suggests close connections to ToT and
CoT, as a fine-tuning scheme, it resorts to model updates, and is
thus outside the focus of this work. Similarly, the graph-of-thoughts
repository (qrdlgit 2023) does not enable general graph-based rea-
soning and harnesses instead ToT with BFS.

Scheme Sc? Mc? Tr? Ag?
CoT � é é é
CoT-SC � � é é
ToT (Xie et al. 2023) � � � é
ToT (Long 2023) � � � é
ToT (Yao et al. 2023a) � � � é

GoT � � � �

Table 1: Comparison of prompting schemes, with re-
spect to the supported transformations of thoughts. “Sc?”:
single chain of thoughts? “Mc?”: multiple chains of
thoughts? “Tr?”: tree of thoughts? “Ag?”: arbitrary graph
of thoughts? “�”: full support, “�”: partial support, “é”:
no support.

2 The GoT Framework
We now detail the GoT framework. We present it in Figure 1,
and compare it to other prompting strategies.

The conversation with the LLM consists of user mes-
sages (prompts) and the LLM replies (thoughts). We follow
the established notation (Yao et al. 2023a) and we denote a
pre-trained language model (LM) with parameters θ as pθ.
Lowercase letters such as x, y, z, ... indicate LLM thoughts.

Formally, GoT can be modeled as a tuple (G, T , E ,R),
where G is the “LLM reasoning process” (i.e., all the LLM
thoughts within the context, with their relationships), T are
the potential thought transformations, E is an evaluator func-
tion used to obtain scores of thoughts, and R is a ranking
function used to select most relevant thoughts.

2.1 Reasoning Process
We model the reasoning process as a directed graph G =
(V,E); V is a set of vertices and E ⊆ V × V is a set of
edges. A vertex contains a solution to a problem at hand
(be it an initial, intermediate, or a final one). The concrete
form of such a thought depends on the use case; it could
be a paragraph (in writing tasks) or a sequence of numbers
(in sorting). A directed edge (t1, t2) indicates that thought
t2 has been constructed using t1 as “direct input”, i.e., by
explicitly instructing the LLM to use t1 for generating t2.

We associate G with the LLM reasoning process. To ad-
vance this process, one applies thought transformations to
G. An example of such a transformation is to merge best-
scoring (so far) thoughts into a new one. Another example
is to loop over a thought, in order to enhance it. Note that
these transformations strictly extend the set of transforma-
tions available in the CoT, CoT-SC, or ToT.

2.2 Transformations of Thoughts
GoT enables novel transformations of thoughts thanks to
the graph-based model for reasoning. We refer to them as
graph-enabled transformations. For example, in writing,
one could combine several input articles into one coherent
summary. In sorting, one could merge several sorted subar-
rays of numbers into a final sorted array.
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Figure 1: Comparison of Graph of Thoughts (GoT) to other prompting strategies.

Formally, each such transformation can be modeled as
T (G, pθ) where G = (V,E) is the graph reflecting the
current state of the reasoning, and pθ is the used LLM. T
modifies G usually by adding new vertices and their incom-
ing edges. We have G′ = T (G, pθ) = (V ′, E′), where
V ′ = (V ∪ V +) \ V − and E′ = (E ∪ E+) \ E−. V +

and E+ are new vertices and edges inserted into G to model
the new thoughts and their dependencies, respectively. To
maximize the expressiveness of GoT – we also enable the
user to explicitly remove thoughts, by specifying the corre-
sponding vertices and edges to be removed (V − andE−, re-
spectively). This enables seamless incorporation of schemes
where, in order to save space within the context, one can re-
move parts of reasoning that do not promise improvements.

First, with GoT, one can aggregate arbitrary thoughts
into new ones, to combine and reinforce the advantages of
these thoughts, while eliminating their disadvantages. In the
basic form, in which only one new vertex is created, V + =
{v+} and E+ = {(v1, v+), ..., (vk, v

+)}, where v1, ..., vk
are the merged k thoughts. More generally, this enables ag-
gregating reasoning paths, i.e., longer chains of thoughts,
beyond just individual thoughts. With the graph model, it is
simply achieved by adding outgoing edges from the vertices
v1, ..., vk, modeling final thoughts in several chains, into a
single thought v+ combining these chains.

Another thought transformation is the refining of a cur-
rent thought v by modifying its content: V + = {} and
E+ = {(v, v)}. This loop in the graph indicates an iterated
thought with the same connections as the original thought.

Finally, one can generate one or more new thoughts
based on an existing single thought v. This class embraces
analogous reasoning steps from earlier schemes, such as ToT
or CoT-SC. Formally, we have V + = {v+1 , ..., v

+
k } and

E+ = {(v, v+1 ), ..., (v, v+k )}.

2.3 Scoring & Ranking Thoughts
Thoughts are scored to understand whether the current solu-
tion is good enough. A score is modeled as a general func-
tion E(v,G, pθ), where v is a thought to be evaluated. We

use the state of the whole reasoning process (G) in E for
maximum generality, because – for example – in some eval-
uation scenarios, scores may be relative to other thoughts.

GoT can also rank thoughts. We model this with a func-
tion R(G, pθ, h) where h specifies the number of highest-
ranking thoughts in G to be returned by R. While the spe-
cific form ofR depends on the use case, we most often use a
simple yet effective strategy where h thoughts with the high-
est scores are returned, i.e., v1, ..., vh = R(G, pθ, h).

Specific forms of E and R depend on the use case. We
discuss the details in Section 4. For example, the score (or
rank) for sorting corresponds to the count of elements cor-
rectly sorted (or incorrectly, when using the error as a score).

3 System Architecture & Extensibility
The GoT architecture consists of a set of interacting mod-
ules, see Figure 2 (the blue part). These modules are the
Prompter (prepares the messages for the LLM), the Parser
(extracts information from LLM thoughts), the Scoring
module (verifies and scores the LLM thoughts), and the
Controller (coordinates the entire reasoning process, and de-
cides on how to progress it). The Controller contains two fur-
ther important elements: the Graph of Operations (GoO) and
the Graph Reasoning State (GRS). GoO is a static structure
that specifies the graph decomposition of a given task, i.e.,
it prescribes transformations to be applied to LLM thoughts,
together with their order & dependencies. GRS is a dynamic
structure that maintains the state of the ongoing LLM rea-
soning process (the history of its thoughts and their states).

Prompter The Prompter prepares the prompts to be sent
to the LLM. This module is responsible for the specifics of
encoding the graph structure within the prompt. The GoT
architecture enables the user to implement use case specific
graph encodings by providing full access to the graph struc-
ture.

Parser The Parser extracts information from LLM
thoughts. For each such thought, the Parser constructs the
thought state, which contains this extracted information. The
thought state is then used to update the GRS accordingly.
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➡ Repeat(k) //Repeat a given operation k times, generating k thoughts.
    //For example, this enables "Aggregate" to generate multiple outcomes
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Figure 2: The system architecture of GoT, and the APIs of respective modules. The user can straightforwardly extend the design
towards new prompting schemes, experiment with novel thought transformations, and plug in different LLMs. The blue part of
the figure contains the architecture overview, and the green part lists the API.

Scoring & Validation Here, we verify whether a given
LLM thought satisfies potential correctness conditions, and
then we assign it a score. Depending on how the score is
derived, the module may consult the LLM. Moreover, de-
pending on the use case, the score may also be assigned by
a human. Finally, use cases such as sorting use simple local
scoring functions.

Controller The Controller implements a specific strategy
for selecting thoughts from its GRS structure. It also selects
what transformations should be applied to which thoughts,
and then passes this information to the Prompter. It also
decides whether the whole process should be finalized, or
whether the next round of interaction with the LLM should
be initiated. In our current design, this is dictated by the ex-
ecution plan specified in the GoO.

GoO & GRS The user constructs a GoO instance, which
prescribes the execution plan of thought operations. The
GoO is a static structure that is constructed once, before the
execution starts. Each operation object knows its predeces-
sor and successor operations. Then, during the execution, an
instance of the GRS maintains the continually updated in-
formation about the LLM reasoning process. This includes
which operation has been executed so far, the states of all
the generated LLM thoughts, their validity and scores, and
any other relevant information.

The above elements offer extensible APIs, enabling
straightforward implementations of different prompting

schemes. The APIs are outlines in the green part of Figure 2,
and detailed in the documentation.

4 Example Use Cases
Due to space constraints, we detail one use case (sorting).
We focus on its decomposition and Graph of Operations,
which are central for implementing and executing any work-
load within GoT. We consider sorting numbers 0–9 with du-
plicates. The considered LLMs are unable to sort a sequence
of such numbers correctly beyond a certain length consis-
tently because duplicate counts do not match.

In GoT, we employ merge-based sorting: First, one de-
composes the input sequence of numbers into subarrays.
Then, one sorts these subarrays individually, and then re-
spectively merges them into a final solution. Figure 3 illus-
trates this use case together with its graph decomposition.
Here, an LLM thought is a sequence of sorted numbers.

Moreover, we also consider set operations, focusing on
set intersection. They have numerous applications (partic-
ularly set intersection) in problems ranging from genome
or document comparisons to pattern matching (Besta et al.
2020, 2021a). Set intersection of two sets is implemented
similarly as the sorting. The second input set is split into
subsets and the intersection of those subsets with the first in-
put set is determined with the help of the LLM. Afterwards
the resulting intersection sets are aggregated for the final re-
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Score, KeepBest) are described in Figure 2.

sults. For the evaluation we use different set sizes of 32, 64
and 128 elements and we vary the number of elements found
in both sets to be between 25% and 75%.

Keyword counting finds the frequency of keywords in a
given category (countries in our example implementation)
within the input text. GoT splits the input text into multiple
passages, counts the keywords in each passage and aggre-
gates the subresults. The number of passages is configurable
and can also be left to the LLM, making it possible to treat
each sentence as a separate passage. Here, to score a thought,
we first – for each keyword – derive the absolute difference
between the computed count and the correct one. We then
sum all these differences to get the final score.

Finally, we also provide document merging. Here, the
goal is to generate a new Non-Disclosure Agreement (NDA)
document based on several input ones that partially over-
lap in terms of their contents. The goal is to ensure minimal
amount of duplication, while maximizing information reten-
tion. Document merging is broadly applicable in, e.g., legal
procedures, where multiple sources of information have to
be combined into a single document or article. To score a
solution, we query the LLM for two values (3 times for each
value, and take the average). The first value corresponds to
the solution redundancy (10 indicates no redundancy, 0 im-
plies at least half the information is redundant), the second
value stands for information retention (10 indicates all infor-
mation is retained, 0 says that none is retained). We compute
the harmonic mean of these values.

5 The Latency-Volume Tradeoff
We now show that GoT improves upon previous prompting
schemes in terms of the tradeoff between latency (number of
hops in the graph of thoughts to reach a given final thought)
and volume. We define volume – for a given thought t – as
the number of preceding LLM thoughts that could have im-
pacted t. Formally, the volume of t is the number of thoughts
from which there exists a path to t in the graph of thoughts.
We assume that outputting a single thought costs O(1) time
and fix the total cost to Θ(n) for each prompting scheme.

The structure of the schemes is as follows. CoT-SC con-
sists of k independent chains originating from a single start-
ing thought. ToT is a complete k-ary tree. Finally, in GoT, a
complete k-ary tree is joined at its leaves with a “mirrored”
k-ary tree of the same size but with its edges reversed.

The analysis is detailed in Table 2. CoT offers a large vol-
ume of up to N , but at the cost of a high latency of N . CoT-

Scheme Latency Volume
CoT N N
CoT-SC N/k N/k
ToT logkN O(logkN)

GoT logkN N

Table 2: Comparison of prompting schemes, with respect
to their fundamental tradeoff between latency and volume.
GoT offers the best tradeoff.
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3.5. L and k indicate the structure of ToT (see Section 2.2).

SC reduces the latency by a factor of k (which corresponds
to its branching factor), but it simultaneously decreases the
volume by k as well. ToT offers a latency of logkN but
also has low volume. GoT is the only scheme to come with
both a low latency of logkN and a high volume N . This
is enabled by the fact that GoT harnesses aggregations of
thoughts, making it possible to reach the final thought from
any other intermediate thought in the graph decomposition.

6 Evaluation
We show the advantages of GoT over the state of the art. We
focus on comparing GoT to ToT, as it was shown to consis-
tently outperform other schemes. Still, for a broad compari-
son, we also experiment with IO, CoT, and CoT-SC. As our
analysis results in a large evaluation space, we present rep-
resentative results and omit data that does not bring relevant
insights (e.g., CoT-SC).

6.1 Evaluation Methodology
We use 100 input samples for each task and comparison
baseline. We set the temperature to 1.0 and use a 4k con-
text size unless stated otherwise. For each experiment, we
fix the numbers of thoughts in respective schemes to achieve
similar costs in each experiment.

Parameters We experiment extensively with the branch-
ing factor k and the number of levels L to ensure that we
compare GoT to cost-effective and advantageous configu-
rations. We plot two variants of ToT: one with higher k
and lower depth (ToT), the other with lower k but higher L
(ToT2). We usually aim to achieve a sweet spot in the trade-
off between sparser generation rounds (lower k) vs. more
rounds (larger L). Usually more responses per round is more
expensive (e.g., 80 vs. 60 total responses for Figure 6 but $6
vs. $3 costs). We also try different problem sizes P (e.g., in
sorting, P states how many numbers are to be sorted).

Used LLMs Due to budget restrictions, we focus on GPT-
3.5. We also experimented with Llama 2, but it was usually
worse than GPT-3.5 and also much slower to run, making it
infeasible to obtain enough samples.

6.2 Analysis of GoT’s Advantages
The results of analysis are in Figure 4 (sorting), 5 (set inter-
section), and 6 (keyword counting and document merging);
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Figure 5: Accuracy and cost in set intersection tasks with
ChatGPT-3.5.L and k indicate the structure of ToT (see Sec-
tions 2.2 and 5).

see Section 4 for the description of specific use cases. Over-
all, GoT improves the quality of outcomes over all the con-
sidered baselines and it reduces inference costs compared to
ToT.

GoT vs. ToT GoT improves upon ToT and ToT2 by a
large margin over all the considered problem instances. ToT
usually comes with somewhat higher quality than ToT2, but
simultaneously much higher costs. GoT’s costs are always
lower than ToT, and comparable (in some cases lower, in
others higher) to ToT2. For example, it reduces median er-
ror by ≈62%, thereby achieving a higher quality of sorting,
for P = 128 in comparison to ToT while ensuring >31%
cost reductions. These advantages are due to GoT’s ability to
decompose complex tasks into simpler subtasks, solve these
subtasks independently, and then incrementally merge these
outcomes into the final result.

GoT vs. IO and CoT GoT consistently delivers much
higher quality of outcomes than IO/CoT. For example, for
sorting (P = 64), GoT’s median error is ≈65% and ≈83%
lower than, respectively, CoT and IO. Yet, the costs of GoT
– and ToT – are much higher than in IO and CoT. This is
mostly due to our configuration of CoT, where we do not ar-
tificially inflate the lengths of the chains of reasoning if this
does not improve the outcomes. The higher costs of GoT and
ToT are driven by k new thoughts built for each Generate
operation; these multiple thoughts are one of the reasons for
GoT’s superiority in quality.

Increasing Complexity of Tackled Problems Most im-
portantly, the advantages of GoT in the quality increase for
all the baselines with the growing size of the problem P . For
example, in sorting, while for P = 32 GoT only negligibly
improves upon ToT2, its median error count becomes lower
by ≈61% for P = 64 and ≈69% for P = 128. The quar-
tiles also become respectively better. The results for other
schemes also follow the intuition; for example, IO becomes
consistently worse with the increasing P , which is expected
as a single thought is unlikely to solve a large problem in-
stance. Overall, this analysis illustrates that GoT is indeed
well-suited for elaborate problem cases, as the execution
schedules usually become more complex with the growing
problem sizes.
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Figure 6: Number of errors and cost in keyword counting
and score in document merging with ChatGPT-3.5. L and k
indicate the structure of ToT (see Sections 2.2 and 5). Num-
ber of samples for document merging: 50; context size for
document merging: 16k tokens.

6.3 Discussion on Task Decomposition
When splitting a task into subtasks and then solving these
subtasks, the size of responses and the input (in tokens) are
reduced proportionally to the degree of the task decomposi-
tion. However, the “static” part of the prompt (i.e., few-shot
examples) may become a significant overhead (see GoT4 to
GoT8 in Figure 6). Here, we observe that these few-shot ex-
amples can usually also be reduced in size (e.g., the passages
used to demonstrate keyword counting can also be made
smaller and still be indicative of the actual input size), thus
actively working towards decreasing the cost (e.g., see the
difference between GoT8 and GoTx in Figure 6).

The overall goal when conducting graph decomposition is
to break down a task to the point, where the LLM can solve
it correctly for the majority of time using a single prompt
(or with a few additional improvement steps). This signifi-
cantly lowers the number of improvement/refinement steps
needed during the later stages of the graph exploration. Fur-
thermore, as indicated by our results, combining or concate-
nating subresults is usually an easier task than solving large
task instances from scratch. Hence, the LLM is often suc-
cessful when aggregating the final solution.

7 Related Work
We summarize relations between GoT and related work.

Prompting Paradigms & Approaches We detail differ-
ent prompting paradigms in Section 1 and Table 1. There are
numerous other works related to prompting, including Plan-
and-Solve (Wang et al. 2023a), a scheme by Fu et al. (Fu
et al. 2022), the self-taught reasoner (Zelikman et al. 2022),
a scheme by Shum et al. (Shum, Diao, and Zhang 2023), au-
tomatic prompt generation (Shin et al. 2020; Li and Liang
2021; Lester, Al-Rfou, and Constant 2021), concurrent ex-
pansion of brief answers in the form of bullet points (Ning
et al. 2023), or selecting the best prompt out of a candidate
set (Zhou et al. 2022). Most of these schemes could be ex-
pressed by the GoT abstraction.

Prompt Chaining In prompt chaining, one cascades dif-
ferent LLMs (Creswell, Shanahan, and Higgins 2022; Nye
et al. 2021; Wu, Terry, and Cai 2022; Dohan et al. 2022;
Qiao et al. 2023; Wu et al. 2022). One could easily extend

GoT so that it can serve as the execution engine for these
schemes.

Self-Reflection & Self-Evaluation Self-reflection and
self-evaluation were introduced recently (Shinn et al. 2023;
Paul et al. 2023; Madaan et al. 2023; Xie et al. 2023; Zhu
et al. 2023). In GoT, we partially rely on self-evaluation
when expanding the graph of thoughts within a prompt.

LLMs & Planning There are many works on how to plan
complex tasks with LLMs (Huang et al. 2022a,b; Zhang
et al. 2023; Yao et al. 2023b; Yang et al. 2023; Wang et al.
2023c). GoT could be seen as a generic framework that
could potentially be used to enhance such schemes, by offer-
ing a paradigm for generating complex graph-based plans.

Graphs & Graph Computing Graphs have become an
immensely popular and important part of the general com-
puting landscape (Lumsdaine et al. 2007; Malewicz et al.
2010; Gregor and Lumsdaine 2005a,b; Sakr et al. 2021). Re-
cently, there has been a growing interest in domains such as
graph databases (Robinson et al. 2015; Besta et al. 2022b,
2023b,d,c), graph pattern matching (Fan et al. 2010; Cheng
et al. 2008; Teixeira et al. 2015; Besta et al. 2021a,b, 2022d),
graph streaming (Feng, Meng, and Ammar 2015; Dhulipala,
Blelloch, and Shun 2019; Besta et al. 2023a), and graph
machine learning as well as graph neural networks (Hamil-
ton, Ying, and Leskovec 2017; Wu et al. 2021; Zhou et al.
2020; Zhang, Cui, and Zhu 2022; Chami et al. 2020; Bron-
stein et al. 2017; Besta et al. 2022a,c; Gianinazzi et al. 2021;
Scarselli et al. 2008). In this work, we harness the graph ab-
straction as a key mechanism that enhances prompting capa-
bilities in LLMs.

8 Conclusion
Prompt engineering is one of the central new domains of
the large language model (LLM) research. It enables using
LLMs efficiently, without any model updates. However, de-
signing effective prompts is a challenging task.

In this work, we propose Graph of Thoughts (GoT), a new
paradigm that enables the LLM to solve different tasks effec-
tively without any model updates. The key idea is to model
the LLM reasoning as an arbitrary graph, where thoughts
are vertices and dependencies between thoughts are edges.
This enables novel transformations of thoughts, such as ag-
gregation. Human’s task solving is often non-linear, and it
involves combining intermediate solutions into final ones,
or changing the flow of reasoning upon discovering new in-
sights. GoT reflects this with its graph structure.

GoT outperforms other prompting schemes, for example
ensuring 62% increase in the quality of sorting over ToT,
while simultaneously reducing costs by>31%. We also pro-
pose a novel metric for a prompting scheme, the volume of
a thought, to indicate the scope of information that a given
LLM output could carry with it, where GoT also excels. This
provides a step towards more principled prompt engineering.

The graph abstraction has been the foundation of several
successful designs in computing and AI over last decades,
for example AlphaFold for protein predictions. Our work
harnesses it within the realm of prompt engineering.
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