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The human impact on greenhouse gas concentrations in the 
atmosphere and the effects on the climate system have been 
documented and explained by a vast resource of scientific 

publications, and the conclusion—that anthropogenic greenhouse 
gas emissions need to be drastically reduced within a few decades 
to avoid a climate catastrophe—is accepted by more than 97% of the 
Earth-system science community today1. The pressure to provide 
skillful predictions of extremes in a changing climate, for example, 
the number and intensity of tropical cyclones and the likelihood of 
heatwaves and drought co-occurrence, is particularly high because 
the present-day impact of natural hazards at a global level is stag-
gering. In the period 1998–2017, over 1 million fatalities and several 
trillion dollars in economic loss have occurred2. The years between 
2010 and 2019 have been the costliest decade on record with the 
economic damage reaching US$2.98 trillion—US$1.19 trillion 
higher than 2000–20093. Both extreme weather and the potential 
failure to act on climate change rank as the leading risks combining 
maximum likelihood and impact for our future4.

These losses do not invalidate the steady progress achieved in 
weather prediction over the past decades, that is, the combined 
result of improved observing systems, a better understanding of the 
relevant physical processes occurring and interacting in the Earth 
system and the exponential growth of general-purpose computing 
technology performance at nearly constant cost5. However, continu-
ing at this pace is being questioned right now for two major reasons. 
First, the apparent effects of climate change on our environment—in 
particular on the frequency of occurrence and the intensity of envi-
ronmental extremes—require urgent political response and much 
faster progress in delivering skillful predictions of future change6,7. 
Earth-system models need more than steady progress and make a 
leap to very high resolution, a more realistic representation of pro-
cesses at all scales and their interaction between atmosphere, ocean, 
cryosphere, land surfaces and the biosphere. This leap will inevi-
tably translate into a leap in our computational and data handling 
capacity needs. Second, the explosion of data challenges8 and the 
demise of the ‘laws’ of Dennard and Moore9 require a rethinking of 
the way we approach Earth-system modeling and high-performance 
computing (HPC) at extreme scales. These laws have been driving 
the development of microchips for decades. Dennard scaling states 
that shrinking feature sizes of transistors also decreases their power 
consumption such that the frequency could be increased from pro-
cessor generation to the next while the heat dissipation per chip 
area remained approximately constant. Dennard scaling ended 
nearly 15 years ago and led to the ‘multicore crisis’ and the advent of  

commodity parallel processing. Moore’s law drove the economics of 
computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However, 
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase 
the performance while keeping the cost constant, transistors need to 
be used more efficiently.

In this Perspective, we will present potential solutions to adapt 
our current algorithmic framework to best exploit what new digital 
technologies have to offer, thus paving the way to address the afore-
mentioned challenges. In addition, we will propose the concept of 
a generic, scalable and performant prediction system architecture 
that allows advancement of our weather and climate prediction 
capabilities to the required levels. Powerful machine learning tools 
can accelerate progress in nearly all parts of this concept.

The perfect application for extreme computing
Weather prediction has been a pioneering application of numeri-
cal computer simulations since John von Neuman’s ‘Meteorology 
Project’ in the late 1940s10,11. Much has been achieved since then 
and today’s operational global predictions are completed within 
an hour for models with about 10 million grid points, 100 verti-
cal layers and 10 prognostic variables, initialized using 100 mil-
lion observations per day. These calculations run on hundreds of 
nodes of general-purpose central processing units (CPU) offered 
by vendors in the US, Asia and Europe. The need to run simula-
tion ensembles for predicting both state and uncertainty12 multiplies 
both compute and data burden—but has proven hugely beneficial 
for decision-making13.

Figure 1 illustrates the elements of an operational weather pre-
diction workflow, in which steps 2–4 are very compute- (peta-flops) 
and data- (100 terabytes per day) intensive. Weather simulations 
are different from climate simulations as they are run in burst 
mode at given times per day while climate predictions are run in 
steady-production mode to complete multi-decadal, centennial and 
millennial projections of the climate.

Given the computational constraints, weather and climate 
models have diverged in the past decades: climate models need to 
represent closed and stable energy, water and constituent cycles at 
the expense of small-scale process detail; weather models, on the 
other hand, need this level of detail for locally accurate forecasts, 
but choose to exclude those Earth-system processes that are less rel-
evant for weather on day-to-season time scales. For example, the 
accurate description of water-cycle processes is highly relevant for 

The digital revolution of Earth-system science
Peter Bauer   1 ✉, Peter D. Dueben1, Torsten Hoefler2, Tiago Quintino   3, Thomas C. Schulthess4 and 
Nils P. Wedi1

Computational science is crucial for delivering reliable weather and climate predictions. However, despite decades of 
high-performance computing experience, there is serious concern about the sustainability of this application in the post-Moore/
Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scal-
able and more adaptable to future, yet unknown computing architectures.

NaTurE ComPuTaTioNal SCiENCE | VOL 1 | FEbRUaRy 2021 | 104–113 | www.nature.com/natcomputsci104

mailto:peter.bauer@ecmwf.int
http://orcid.org/0000-0002-3205-6055
http://orcid.org/0000-0003-0602-0531
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-021-00023-0&domain=pdf
http://www.nature.com/natcomputsci


PersPectiveNaTure CoMpuTaTioNal SCieNCe

both weather and climate models while the representation of the 
carbon cycle is only important at climate time scales. Increasingly 
though, the recognition that small scales matter for climate predic-
tions14 and that Earth-system complexity matters for weather pre-
diction15 dawns on our community and is leading to converging 
developments. As a consequence, we need both very high resolution 
and Earth-system process complexity.

Stretching the computing limits to what is available on the fast-
est supercomputers in the world allows us to gauge how much 
more realistic very high-resolution simulations become16,17 (Fig. 2) 
but also what the computing footprint with existing codes would 
be17,18. These experiments show that—only for forecasts—these 
computers cannot fully deliver the throughput required to produce 
high-resolution simulations of fully coupled Earth-system models, 
and the data volumes these simulations would produce cannot be 
handled effectively. This makes future weather and climate predic-
tions an extreme-scale computing and data-handling challenge.

The urgency of climate change and the need for much faster 
progress than in the past translates into much more than only a 
forecast model upgrade. To build an information system in support 
of policy- and decision-making, the workflow shown in Fig. 1 needs 
to be extended to weather- and climate-dependent applications like 
energy, food, water and disaster management and to add flexibility 
for testing both scientific and socio-economic scenarios. This infor-
mation system is called a digital twin19 (Box 1). The twin produces 
a digital replica of the real world through simulations and observa-
tions with much more physical realism than it is possible today and 
by fully integrating impact sectors and human behavior in the Earth 
system. With the advent of cyber-physical systems in the context of 
the fourth industrial revolution20, this concept is being increasingly 
applied to other areas beyond engineering21—in our case, weather 
and climate prediction.

Code adaptation to new technologies
Traditional practices. The record of continual code adaptation to 
emerging technology reaches back to the 1970s when supercom-
puters became commercially available and used by prediction cen-
ters. The main disruption in technology—the move from vector to 
scalar processors in the 1990s22—coincided with a period where 
models substantially increased spatial resolution benefiting from 
much enhanced parallelism23. Since then, these codes have profited 
from Moore’s law24 and Dennard scaling25 without much pressure 
to fundamentally revise numerical methods and programming 
paradigms.

This has led to very large legacy codes, primarily driven by sci-
entific concerns, leaving very little room for computational science 

innovation26. The result is that such codes only achieve around 
5% sustained floating-point performance on present-day CPU 
machines27, which sufficed as long as CPU technology delivered 
exponential performance growth in clock-speed, memory size and 
access speed. Now, as this growth is stopping and energy cost is ris-
ing, a computing ‘chasm’ looms28 that our community has to over-
come to deliver better and more cost-effective predictions.

Earth-system models discretize the set of physical equations 
for the resolved processes in space and time29 and use parameter-
izations for unresolved processes such as cloud microphysics and 
turbulence, which impact the prognostic variables at the resolved 
scales30. The same applies to data assimilation, whose computing 
performance is mostly driven by the forecast model and coupled 
components representing ocean processes, surface waves, sea-ice, 
land surfaces including vegetation and so forth in the Earth sys-
tem31. Different choices of discretization imply different solvers 
with specific patterns for memory access and data communication 
per time step. The time step itself is an important cost factor and 
depends on the choice of discretization32,33, but is also constrained 
by the non-linearity of the problem and the type and speed of 
motions to be resolved34.

There have been several programs aiming to substantially accel-
erate weather and climate prediction code infrastructures in the past 
decade. However, one would call these improvements ‘traditional’ 
because they refrain from touching the basic algorithmic concepts 
and work along known science software development paths. The 
code is primarily written by scientists and then computer scientists 
extract performance by incrementally refactoring code, typically 
improving memory and communication handling, and by introduc-
ing code directives to exploit parallelism and vectorization based on 
standard programming models.

More recently, the option of precision reduction below the 
default of double precision has been investigated to improve band-
width and computational throughput35–37. The precision reduc-
tion below single precision is non-trivial in a complex, non-linear 
weather model38. Another route has been to advance the concur-
rent execution of different model sub-components, thus breaking 
up the classical, strictly sequential execution of physical process 
calculations per time step39. This is also relevant where sea-ice and 
ocean dynamics calculations are co-executed40. More generally, 
overlapping computing and data transfer can speed up individual 
numerical algorithms that heavily rely on data communication41,42, 
or accelerate workflows in which data analysis and post-processing 
run concurrently with the model43.

Porting computing intensive code parts to novel architectures 
such as graphics processing unit (GPU)-accelerated systems and 
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Fig. 1 | Typical production workflow in operational numerical weather prediction. (1) High-volume and high-speed observational data acquisition and 
pre-processing; (2) data assimilation into models to produce initial conditions for forecasts; (3) forecast production by Earth-system simulation models; (4) 
generation of output products tailored to the portfolio of weather and climate information users; (5) direct dissemination of raw output and web-products; 
(6) long-term archiving for reuse in statistical analyses and performance diagnostics; (7) user-specific applications and data-driven analytics.
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many-core processors has shown good results, but often requiring 
laborious code rewrites. An early effort based on Fortran to Compute 
Unified Device Architecture (CUDA) source-to-source translation 
succeeded in making the global Non-hydrostatic Icosahedral Model 
(NIM) of the National Oceanic and Atmospheric Administration 
(NOAA) portable across multiple architectures, including NVDIA 
GPUs44. A rewrite of the Consortium for Small-scale Modeling 
(COSMO) dynamical core along with porting of physics parameter-
ization45 resulted in the first fully operational, limited-area climate 
and weather model running on GPU-accelerated systems. A very 
large effort is presently underway in the US Department of Energy’s 
(DoE) Exascale Computing Project (ECP) to evolve the Energy 
Exascale Earth System Model (ESMD/E3SM) to novel computing 
architectures46. The US National Center for Atmospheric Research 
(NCAR) high-resolution version of the Community Earth System 
Model (CESM) code has been extensively adapted and optimized 
for the heterogeneous management/computing processing ele-
ment architecture on the Sunway TaihuLight supercomputer47. 
Furthermore, the Met Office is leading a large project in the UK 
to implement the successor to the Unified Model (UM) in such a 
way that any conceivable future architecture can be supported48,49. 
In Japan, both high-resolution modeling and large ensemble data 
assimilation developments break similar barriers on the world’s 
largest supercomputing facilities50,51. The following modern code 
design practices are likely to emerge from these efforts.

Modern practices in co-designing algorithms and computing. 
Recent performance assessments show that present codes fall way 
short of the throughput targets needed for operational produc-
tion18. Traditional code adaptation will not be sufficient to achieve 
the necessary efficiency gains and manual adaptation is not sus-
tainable as technology keeps changing. Therefore, the suitability of 
the basic algorithmic framework needs to be scrutinized52 and new 
data-driven methodologies like machine learning need be incor-
porated where they promise savings without loss of quality53. Since 
digital technologies evolve rapidly, both performance and portabil-
ity matter. The ultimate goal is to avoid technology lock-in as well 
as algorithmic lock-in.

Data structures and discretization. When investing in more intru-
sive measures to enhance performance, a few basic architectural 
building blocks require attention, such as spatial discretization, 
forward-in-time time stepping and the (intrinsic) coupling of 

Earth-system components, all of which strongly rely on data struc-
tures. The actual performance metrics should reflect the complex-
ity of the entire problem, and this goes well beyond achievable 
floating-point operation rates18,54.

As time-stepping algorithms and choices of spatial discretiza-
tion combined with particular advection transport schemes are not 
independent30,34, substantial speedups can be obtained by making 
the appropriate choice. On existing architectures, (semi-)implicit 
numerical schemes offer such speedups because large time steps 
produce stable solutions despite the drawback of additional com-
munications18,55. This is in comparison to inherently local, explicit 
schemes with higher-order discretization stencils, which pay a high 
price for achieving numerical stability with small time steps to cap-
ture fast evolving processes.

Both efficiency and accuracy can be achieved by combin-
ing large-time-step methods with higher-order discretizations55. 
Other solutions offer efficiencies through different time steps used 
for different Earth-system components, splitting vertical from 
horizontal advective transport56, full coupling of the discretized 
dynamical equations, and the same computational pattern being 
repeatedly applied, for example, for the advection scheme or the 
vertical-column physical process simulation across atmosphere  
and ocean.

As for reduced precision, it is still unknown how this will affect 
slow error growth in the global mean model state at long time scales. 
It does not help that many different time- and length-scales of 
weather and climate processes interact non-linearly with each other 
leading to a continuous rather than well separated spectrum of 
motions57, in contrast with other multi-physics applications where 
processes and their computations can be readily split due to their 
vastly different time and length scales.

Another approach concerns parallel-in-time methods, which 
have received renewed interest because of the advent of massively 
parallel computers58. In contrast with spatial discretization, the 
particular problem for parallelizing time in weather and climate 
applications is to consider the dependence on the time history of 
the flow and maintaining the accuracy and numerical stability of 
the integrations59,60.

Tightly linked to discretization and the connectivity choices of 
grids and meshes is the overall data structure of models. The com-
plexity of weather and climate models does not readily allow flexibly 
changing data structure or use asynchronous data-flow program-
ming models61. Existing structures are often explicitly or implicitly 

Fig. 2 | Comparison between observed and simulated satellite imagery. The satellite data (left) were obtained by Meteosat Second Generation’s Spinning 
Enhanced Visible and Infrared Imager and represent the emitted radiances at infrared wavelengths. The simulation (right) was produced with the ECMWF 
Integrated Forecasting System at 1 km spatial resolution.
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tied to a specific structured or unstructured grid arrangement on 
which the algorithms operate. More generic approaches can antici-
pate where data resides and where it will be next, but can also help 
exploit an increasing hierarchy of memory layers on emerging hard-
ware platforms62.

Performance and portability. Digging even deeper into model and 
data assimilation architectures requires breaking up codes into 
domain-specific key algorithmic motifs and encapsulating them 
in separate, mid-sized applications with well-defined application 
programming interfaces (API). This has greatly helped to identify 

their specific performance bottlenecks and to adapt them to differ-
ent hardware architectures with alternative programming models 
and alternative algorithms63. Building such mid-sized applications 
and sharing them with vendors and academia has been a popular 
approach64 also to widen the perspective on the key elements of 
weather and climate models, while extending such research beyond 
atmospheric applications to numerical algorithms used in ocean, 
wave, sea-ice and biogeochemistry models.

While a bespoke implementation on a specific HPC architecture 
can return substantial speedups65, achieving performance without 
sacrificing portability is seen as crucial to avoid a solution where 

Box 1 | Digital twins

Digital twins were created for industrial production and space 
technology engineering processes. Their goal is to optimize design 
and operations of complex processes through a highly intercon-
nected workflow combining a digital replica of the process with 
real-time observations of the physical system. The observations al-
low supervision of performance and health of its components, so 
that performance optimization, autotuning and resilience meas-
ures can be applied on the fly.

The Earth-system digital twin, shown in the figure, optimally 
combines simulations and near-real-time observations to monitor 
the evolution of the Earth system. For each cycle, the simulation 
generates a background forecast ensemble (orange arrows) of 
the Earth system, which is compared to observations (black 
dots) throughout a time window and eventually corrected to an 
analysis ensemble (green arrows), which fits the observations 
better than the background. Uncertainties of forecasts (ellipses) 
and observations (error bars) are fully taken into account from 
ensembles, which are multiple, perturbed realizations of both 
model and observations. Analysis uncertainties become smaller 
than background uncertainties from using the observational 
constraint (smaller spread of green versus orange trajectories). 
The pictures below show a real example from this procedure 

using observations from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) infrared radiometer on board the 
National Aeronautics and Space Administration’s (NASA) Aqua 
satellite and CloudSat cloud radar reflectivity cross-sections 
(bottom left) and the digital-twin simulation from assimilating 
this data (bottom right). This methodology is based on data 
assimilation and has been used in weather forecasting since the 
1990s107,108 and, more recently, in support of climate prediction109.

The simulation–observation fusion is performed in space 
and over a time window whereby the model ensures that the 
optimum, physically consistent evolution is produced accepting 
that observations do not measure all state variables everywhere all 
the time. This optimization has a huge computing footprint as the 
Earth-system state comprises billions of degrees of freedom and 
deals with a non-linear and chaotic system.

The extension of present-day capabilities to digital twins 
that operate at much higher resolution, complexity, with much 
more diverse observations and that include weather- and 
climate-dependent impact models and observations produces 
one of the most challenging applications for digital technologies 
and requires sustained international research and development 
programs110,111.
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one has to continuously rewrite complex software for a particular 
hardware option. Today, most models and data assimilation sys-
tems are still based on millions of lines of Fortran code. In addition, 
they adopt a fairly rigid block-structure in the context of a hybrid 
parallelization scheme using the Message Passing Interface (MPI) 
and Open Multiprocessing (OpenMP) combined with a domain 
knowledge-inspired or convenience-driven data flow within the 
model application66.

The basis for entirely revising this approach are again generic 
data structures and domain-specific software concepts that sepa-
rate scientific code from hardware-dependent software layers—
distinguishing between the algorithmic flexibility concern of the 
front-end and the hardware flexibility concern of the back-end67. 
Ideally, this results in a single data structure view of the entire com-
plex coupled application across a range of architectures, which is 
used in the entire workflow of observation handling, simulation, 
assimilation, I/O, post processing and archiving data68–71.

Such domain-specific software framework developments are 
currently being pursued by the DoE-supported rewrite of the E3SM 
climate model72 based on the C++ library Kokkos73, to achieve per-
formance portability on GPUs and CPUs. The UK Met Office, in 
collaboration with partners in academia, has developed a software 
framework called PsyClone49. MeteoSwiss and the Swiss National 
Supercomputing Centre CSCS pioneered the use of embedded 
domain-specific language constructs through their COSMO adap-
tation based on the C++ STELLA/Gridtools library74, all with per-
formance portability on energy efficient, heterogeneous hardware 
in mind. This has increased the popularity of code-generation tools 
and a fundamental rethinking of the structure and separation of 
concerns in future model developments, promising a route to radi-
cally rewrite the present monolithic and domain-specific codes. 
Beyond CPU and GPU, this approach would also support spe-
cialized data-flow processors like field-programmable gate arrays 
(FPGA) or application specific integrated circuits (ASIC).

Machine learning. Despite the recent flurry of machine learning 
projects, it is still difficult to predict how the application of machine 
learning will shape future developments of weather and climate 
models. There are approaches to build prediction models based on 

machine learning that beat existing predictions systems, in particu-
lar for very short (for example, now-casting75) and very long (for 
example, multi-seasonal76) forecasts, but also for medium-range 
prediction77. However, the majority of the weather and climate 
community remains skeptical regarding the use of black-box 
deep-learning tools for predictions and aims for hybrid modeling 
approaches that couple physical process models with the versatility 
of data-driven machine learning tools to achieve the best results53.

In any case, machine learning is here to stay and has already had 
a notable impact on the development of all of the components of 
the prediction workflow that is visualized in Fig. 1, for example, in 
now-casting and observation processing78, data assimilation79,80, the 
forecast model (for the emulation of parameterization schemes81,82 
and parameter tuning83), and post-processing (for example, in fea-
ture detection and downscaling applications84,85, and uncertainty 
quantification86,87).

Still, the impact of machine learning on weather and climate 
modeling goes beyond the development of tools to improve pre-
diction systems. Artificial intelligence is a multi-trillion US$ mar-
ket88—a multiple of the same value for the entire supercomputing 
market89—and machine learning will keep having a strong impact 
on hardware developments in the future. While co-designed proces-
sors are developed for deep-learning applications—such as the ten-
sor processing unit (TPU)—commodity hardware for the general 
HPC market will have accelerators for deep learning, such as the 
Tensor Cores on NVIDIA Volta GPUs. Machine learning also has a 
strong impact on CPU and interconnect technologies, and compute 
system design.

Special machine learning hardware is optimized for dense lin-
ear algebra calculations at low numerical precision (equal or less 
than half precision) and allows for substantial improvements in 
performance for applications that can make use of this arithmetic. 
While the training and inference of complex machine learning solu-
tions show the best performance on GPU-based systems84 at the 
moment, most weather and climate centers still rely on conventional 
CPU-based systems. While the reduction of precision to three sig-
nificant decimal digits—as available in IEEE half precision—is chal-
lenging but not impossible90, no weather and climate model is able 
to run with less than single precision arithmetic yet. As tests to use 
machine learning accelerators within Earth-system models are in 
their infancy37, the weather and climate community is largely unpre-
pared to use hardware optimized for machine learning applications. 
On the other hand, the use of machine learning accelerators and 
low numerical precision comes naturally when using deep-learning 
solutions within the prediction workflow, in particular if used to 
emulate and replace expensive model components that would oth-
erwise be very difficult to port to an accelerator, such as the physical 
parameterization schemes or tangent linear models in data assimi-
lation91,92. Thus, machine learning, and in particular deep learning, 
also shows the potential to act as a shortcut to HPC efficient code 
and performance portability.

The Earth simulation machine
Proposing a computing infrastructure that optimally serves all 
aspects of weather and climate prediction is nearly impossible as 
the workflows are extremely complex given the large variety of data 
pre-/postprocessing and high-throughput computing steps—exem-
plified by the digital-twin concept. Box 1 explains the digital-twin 
concept and its foundation on the continuous fusion of simulations 
and observations based on information theory.

Given these constraints, we focus on a machine and software 
ecosystem that addresses the extreme-scale aspects of the digital 
twin most effectively. For this, we pose three questions: (1) What are 
the digital-twin requirements? (2) What is the most effective and 
sustainable software ecosystem? (3) What technology and machine 
size can run digital twins in the near future?

Table 1 | Stepwise estimate of hybrid CPu–GPu machine size 
for digital-twin computing based on CoSmo benchmark18,30 
accounting for known, near-future technology upgrades and 
methodological redesign as described in this paper

upgrade and technology acceleration 
factor

remaining 
shortfall 
factor

reference

5,000 Intel Xeon E5-2690 
v3/Nvidia P100

1 100 18

Data structures, grids, 
numerical methods, mixed 
precision, machine learning

4 25 18

GPU bandwidth efficiency 
and bandwidth

2 13 Example, 
NVIDIa V100 vs 
P100104

GPU peak bandwidth and 
memory

1.5 8 Example, 
NVIDIa a100 vs 
V100105

High-bandwidth memory 2 4 Example, HbM3 
vs HbM2106

acceleration and shortfall factors describe the expected acceleration of a digital-twin benchmark 
delivered by each technology upgrade and the remaining shortfall of achievable time to solution, 
respectively.
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Application requirements. Following the digital-twin definition in 
Box 1, its extreme-scale computing requirement is mostly driven by 
the forecast model itself. Even though the twin is based on a huge 
ensemble optimization problem using both simulations and obser-
vations, its efficiency and scalability is determined by the model. 
Observation processing and matching observations with model 
output is comparably cheap. The optimization procedure itself is 
mostly based on executing model runs in various forms and per-
forming memory-intensive matrix operations. The digital-twin 
benchmark would use a very high resolution, coupled Earth-system 
model ensemble noting that a spatial resolution increase has the 
largest footprint on computing and data growth18. When refining 
the simulation grid by a factor of two in the horizontal dimen-
sions, the computational demand roughly grows by a factor of eight, 
since doubling the resolution in each of the two spatial dimen-
sions requires a commensurate increase in the number of time 
steps taken by the simulation. The ensemble mode multiplies the 
requirement by as many ensemble members as are required; how-
ever, lagged ensembles and using machine learning as a cheaper 
alternative for characterizing uncertainty87 can produce substantial  
efficiency gains.

Software ecosystem. According to what we covered in the previous 
sections, a computing and data aware algorithmic framework based 
on flexible control and data structures can drastically reduce the 
computing and data footprint. In addition, such framework must 
overlap the execution of individual model components, focus on 
stencil operations with little data movement overhead, stretch time 
steps as much as possible and reduce arithmetic precision. Machine 
learning will produce further savings through surrogate models.

Apart from producing cost savings, the revised algorithmic 
framework also facilitates the implementation of more generic soft-
ware infrastructures making future codes more portable and there-
fore sustainable. However, it is important to note that implementing 
high-performance codes in low-level environments is not simple 

and requires strong human expertise. We propose a strict separa-
tion of concerns of the programming problem into a productive 
front-end (for example, a Python-based domain-specific software 
framework for the relevant computational patterns) and an inter-
mediate representation (for example, the multi-level Intermediate 
Representation (MLIR)93 or Stateful DataFlow multi-Graphs 
(SDFG)94) for optimization that can then generate tuned code for the 
target architectures. A similar approach is used in machine learn-
ing where models are written with either PyTorch or TensorFlow 
and then compiled into optimized library calls using tools such as 
Accelerated Linear Algebra (XLA) or TensorRT. We expect that the 
design of the front-end will be specialized to our domain or at least 
to certain computational patterns, while many of the optimizations 
and transformations on the intermediate representation (for exam-
ple, loop tiling and fusion) can be re-used across multiple domains. 
Thus, the performance engineering work can utilize existing invest-
ments and also benefit from other science disciplines as well as  
machine learning.

A candidate machine. The end of Moore’s law and Dennard scal-
ing forces us to consider different architectural variants in order 
to use each transistor most efficiently. A domain-specific, weather 
and climate architecture design would need to be manufactured in 
an advanced silicon process to be competitive in terms of energy 
consumption and performance. To maximize performance and cost 
effectiveness it is necessary to use the latest, smallest fabrication 
processes. While manufacturing costs grow very quickly towards 
the latest processes, performance grows even faster. For example, 
reducing transistor size from 16 nm to 5 nm results in a five-fold 
cost growth95 while the transistor density and performance grows 
by a factor of six. As low-cost commoditization only happens at the 
low-performance end, building high-performance domain-specific 
architectures today would require a huge market such as deep learn-
ing where hundreds of millions of dollar investments can be made. 
This means that true weather and climate domain architecture 
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Fig. 3 | Conceptual view of an efficient software infrastructure for the Earth-system digital twin. The digital-twin control layer drives flexible workflows 
for Earth-system modeling and data assimilation using generic data structures and physical process simulations that exploit parallelism and are based 
on algorithms minimizing data movement. DSLs map the algorithmic patterns optimally on the memory and parallel processing power of heterogeneous 
processor architectures. The computing architecture is based on heterogeneous, large-scale architectures within federated systems.
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co-design may not be possible unless funding commensurate with 
the scale of the climate change impact cost would become available.

If we resort to commodity devices that have a large volume mar-
ket and enable high-performance specialized computations, we are 
limited to either vectorized CPUs, highly threaded GPUs or recon-
figurable FPGAs. All these devices are manufactured in the latest 
silicon processes and offer high-performance solutions. Most of 
the energy in information processing systems is spent moving data 
between chips or on the chip96. Only a very small fraction of the 
energy is actually consumed to perform calculations. This is due 
to various control overheads in today’s architectures, and innova-
tions in accelerators mainly aim to reduce these control overheads97. 
Two prime examples are wide vectorization as implemented in the 
Fujitsu A64FX CPU or wide single instruction, multiple thread 
(SIMT)-style GPU machines as in NVIDIA’s A100 accelerator. 
From investigating bounds for stencil programs that are common 
in weather and climate codes on each of these device types98 we can 
conclude that the latest highly vectorized CPUs can be competi-
tive with GPUs if their memory bandwidths match. Unfortunately, 
high-bandwidth memory was only recently added to FPGAs so that 
they will still be outperformed by GPUs in the near future99.

Thus, a pragmatic option for today is a CPU–GPU-based solution. 
However, if industry continues the road of hardening floating-point 
logic on a reconfigurable fabric (similar to Intel’s Stratix 10) and 
adding high-bandwidth memory connections, then the resulting 
CGRA-style (coarse-grained reconfigurable architectures) devices 
could surpass GPU and CPU performance and energy efficiency. 
This technological uncertainty also makes it imperative to imple-
ment new codes in a performance-portable language, which we sug-
gested already above. The most competitive architecture for the next 
years will therefore likely be GPU-accelerated systems for which we 
need a rough size estimate now.

The previously cited benchmark runs used a single, 
high-resolution model forecast and estimated efficiency gain factors 
of 100 to comply with the operational one-year-per-day simulation 
throughput requirement17,18,27. This estimate included a model using 
today’s algorithms and a nearly optimal, yet manual code adapta-
tion to 5,000 GPU accelerators on the Piz Daint100 system with one 
CPU host and one P100 GPU accelerator per node and an overall 

power envelope of 4 MW. Extrapolating this to near-future technol-
ogy produces an estimate of a remaining shortfall factor of four thus 
requiring about 20,000 GPUs to perform the digital-twin calcula-
tions with the necessary throughput (Table 1). This machine would 
have a power envelope of about 20 MW. Whether the 5,000 GPU 
estimate can simply be extrapolated depends on the benchmark’s 
strong scaling limit. Several of these systems are already in produc-
tion to inspire a detailed machine design. For example, Summit 
and its successor Frontier present advanced CPU–GPU technology 
solutions at extreme scale. The European Large Unified Modern 
Infrastructure (LUMI), Leonardo, and MareNostrum5 systems pro-
vide similar technology options101.

An important consideration in machine design is balance. 
Specifically, our machine would need to balance well computation, 
memory, and storage performance given that the storage/compute 
price trade-off can easily be adjusted given partial recomputation102. 
The specific design should be tuned to our domain with an empha-
sis on data movement over raw floating-point performance given 
the available hardware at the specific time.

An HPC system of sufficient size also creates an environmental 
footprint that needs to be taken into account. According to the US 
Environmental Protection Agency, which accounts about 1,000 lb 
CO2 output per MWh, such a simulation machine, if it was built in 
places where only ‘dirty’ power is available, would produce substan-
tial amounts of CO2 per year. Performance and efficiency therefore 
need to make the operation not only economical but also environ-
mentally friendly due to large power consumption rates.

Conclusion and outlook
The synergy of these developments is summarized as a concep-
tual view of the entire proposed infrastructure in Fig. 3. Workflow 
and algorithmic flexibility are provided by generic control layers 
and data structures supporting a variety of grid lay-outs, numeri-
cal methods and overlapping as well as parallelizing model com-
ponent (process) execution and their coupling. Machine learning 
can deliver both computational efficiency and better physical pro-
cess descriptions derived from data analytics. Codes follow the 
separation-of-concerns paradigm whereby front-end, highly legible 
science code is separated from hardware specific, heavily optimized 

Spatial resolution

Earth-system
process complexity

Uncertainty estimate
of Earth-system viewSystem resilience

Code portability

Time and energy to solution

Benefit beyond the state of the art

Technology Science

Individual contributions from:
•   Numerical methods, algorithms and data

•   Machine learning
•   Domain-specific programming languages
•   Heterogeneous processing and memory

architectures

structures

Fig. 4 | Expected contribution of main system developments necessary to achieve key science and computing technology performance goals. The 
distance from the center of the hexagon indicates the magnitude of the individual contributions towards enhanced efficiency for increased spatial 
resolution, more Earth-system complexity and better uncertainty information provided by ensembles as well as resilient, portable and efficient code and 
workflow execution, respectively.
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code back-ends. The link is provided by a domain-specific soft-
ware tool-chain. The system architecture maximizes both time and 
energy to solution and exploits both centralized and cloud-based 
deployments. It is important to understand that computing hard-
ware and software advance on vastly different time scales. The life-
time of software can be decades while high-performance hardware 
is usually used for less than five years. The proposed algorithmic 
and software investments should therefore provide utmost flexibil-
ity and openness to new, fast evolving technology.

By how much all these factors will reduce the cost has not yet 
been fully quantified, but Fig. 4 gives our estimate of the potential 
relative impacts of the contributions outlined in this paper. The 
optimum system design requires these contributions to be devel-
oped together—as they are co-dependent—so that the resulting 
overall benefit beyond the state of the art can be fully achieved.

Computer system development and innovation never stop. The 
best price–performance point will quickly shift and in three years, a 
system design will likely look very different. For example, we could 
imagine software breakthroughs to happen that will make very low 
precision arithmetic viable in Earth-system science computations, 
thus drastically reduce memory and data communication over-
heads. Hardware breakthroughs in reconfigurable or spatial103 as 
well as analog computing63 may also become competitive.

The societal challenges arising from climate change require a 
step-change in predictive skill that will not be reachable with incre-
mental enhancements, and the time is ripe for making substantial 
investments at the interface between Earth-system and computational 
science to promote the revolution in code design that is described in 
this paper. The cost of this effort is small compared to the benefits.
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