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Abstract—In quantum computing, state preparation is the
problem of synthesizing circuits that initialize quantum systems
to specific states. It has been shown that there are states that
require circuits of exponential size to be prepared (when not using
measurements), and consequently, despite extensive research on
this problem, the existing computer-aided design (CAD) methods
produce circuits of exponential size. In this paper, we show how
CAD based state preparation can be made scalable by using
techniques that are unique to quantum computing: measurements,
and the resulting state collapses. With this approach, we are able
to produce wide classes of states in polynomial time, resulting in
an exponential improvement over existing CAD methods.

Index Terms—quantum computing, quantum compilation,
quantum state preparation

I. INTRODUCTION

Quantum computing is an emerging technology that promises
to revolutionize many fields by solving important computational
problems asymptotically faster than classical computers. With
Shor’s algorithm [1] we can compute prime factorizations in
polynomial time and with quantum linear system solvers [2]
we can solve certain linear systems in time which is loga-
rithmic in the number of variables. Opposing these theoretical
breakthroughs, existing quantum hardware is very noisy and
limited in size [3], making it imperative to sharply optimize
all of the circuits deployed for the different parts of quantum
computations: state preparation, evaluation of oracle functions,
measurements. In this paper we focus on state preparation,
the problem of synthesizing circuits that initialize quantum
systems to specfic states. State preparation is needed to prepare
input states which encode problem instances on which then a
quantum algorithm is applied.

Many (and arguably most) of the existing quantum algo-
rithms that achieve exponential speedups over classical algo-
rithms assume that the input state is already given. However,
this assumption is problematic since many quantum states take
exponential time to be synthesized [4], [5]. Hence, state prepa-
ration (along with “reading outputs”) becomes a bottleneck and
a major obstacle towards outperforming classical computers.
This “bottlenecked on input and output operations” is the
case for Quantum Fourier Transform [6] and Quantum Linear
System Solvers [2], just to mention two among many examples.

The computer-aided design (CAD) community has developed
many interesting synthesis and optimization techniques for
quantum circuits [7]–[12], including quantum circuits for state

preparation [5], [13]–[19], but none of these can guarantee to
produce in general circuits that are smaller than exponential.
Quantum phenomena like superposition, entanglement, no-
cloning, and state collapses make optimizations of quantum
circuits challenging and counterintuitive, but as we will show in
this paper, they also create powerful optimization opportunities
that do not exist in classical computing.

In this paper we present a novel CAD method for state
preparation that is based on measurements. First, we explic-
itly consider uniform quantum states, which are an important
subclass of quantum states that arise for example in quantum
simulated annealing [20] (where they are the instance-specific
initial states that need to be prepared) and as q-sampling
states [21] (where they encode probability distributions). Using
measurements we are able to prepare many uniform states in
polynomial time and we formulate a theorem that specifies
which uniform states can be prepared efficiently with the
proposed method. We then extend this approach and show
how measurements can be used to prepare arbitrary quantum
states. Again we give examples of general states that can be
prepared in polynomial time and we formulate another theorem
to specify which states can be prepared efficiently with our
method. Finally, we experimentally verify our method in Qiskit.
Using a quantum computing simulator we show that even under
the influence of noise, the smaller size of our circuits allow us
to prepare states which will be on expectation closer to the
states that we wish to prepare than those prepared by general
state preparation methods.

A. Background

1) Quantum States: For any x ∈ {0, 1}n, an n-qubit
quantum system can be in the state |x〉. These basis states
can be considered an orthonormal basis of a 2n-dimensional
vector space. A general quantum state can be a superposition
of basis states. That is, it can be any normalized vector

|ψ〉 =
∑

x∈{0,1}n
cx |x〉 , (1)

with
∑
x∈{0,1}n |cx|2 = 1, in the vector space that is spanned

by the basis states, and the amplitudes cx are complex numbers.
A quantum state is uniform if all its non-zero amplitudes are the
same real, positive number. That is, a uniform quantum state



can be written like |f〉 := 1√
|f |

∑
x∈{0,1}n,f(x)=1 |x〉 for some

boolean function f : {0, 1}n −→ {0, 1} and |f | := |{x ∈
{0, 1}n, f(x) = 1}|, or equivalently |F 〉 := 1√

|F |

∑
x∈F |x〉

for some subset F ⊂ {0, 1}n.
2) Measurements and State Collapses: When we measure

all qubits, the probability of observing a particular basis state
|x〉 is given by |cx|2. Further, when we measure a single
qubit q we observe either |0〉 or |1〉. The probability of each
observation is equal to the sum of the probabilities |cx|2 over
all basis states |x〉 with x[q] = 0 or x[q] = 1 respectively. That
is, the probability of observing |0〉 is

∑
x∈{0,1}n,x[q]=0 |cx|2

and the probability of observing |1〉 is
∑
x∈{0,1}n,x[q]=1 |cx|2.

Once we observe a value, the state collapses to a new state
in which only those basis states “remain” that match the
observation. The basis states that remain have now amplitudes
that are proportional to the amplitudes they had before the
measurement, whereas the non-matching basis states have now
amplitude 0. So for example, if we have a 2-qubit quantum
system in the state

√
1
9 |00〉 −

√
2
9 |01〉+

√
3
9 |10〉+

√
3
9 |11〉

and we measure the first qubit, we observe |0〉 with probability∣∣∣√ 1
9

∣∣∣2 +
∣∣∣−√ 2

9

∣∣∣2 = 3
9 . If we observe |0〉, the state collapses

to 1√
3/9

(√
1
9 |00〉 −

√
2
9 |01〉

)
, where the normalization factor

1√
3/9

makes it again a valid quantum state. If we now measure

again the first qubit, we observe |0〉 with probability 1.

B. Embedding (boolean) functions into reversible circuits

Notice that for any given boolean function f : {0, 1}n −→
{0, 1} the transformation (x, y) 7→ (x, f(x) + y), x ∈ {0, 1}n,
y ∈ {0, 1}, is reversible and hence we can always synthesize a
quantum circuit Uf that is defined by acting on the basis states
as Uf |x〉 |y〉 = |x〉 |f(x) + y〉. Since Uf only changes the state
|y〉 of the (n+ 1)-st qubit, we say that Uf targets the (n+ 1)-
st qubit. Synthesizing and optimizing these circuits is a task
that has been widely investigated by the quantum computing
community [9], [11].

C. Problem formulation

In this paper we consider the following general problem.

Quantum State Preparation: Given a quantum state

|ψ〉 =
∑

x∈{0,1}n
cx |x〉 , (2)

find a quantum circuit C = g1g2 . . . gs, where the gi are either
primitive gates (that is, unitary transformations on 1 or 2
qubits) or measurements, such that C |0〉 = |ψ〉.

Before investigating this most general form of the state
preparation problem, we will consider the special case when
the quantum state is uniform.

D. Previous work

Many CAD methods have been developed for synthesizing
and optimizing quantum circuits that are built out of classical

gates (that is, gates that map basis states to basis states, like
NOT, CNOT, Toffoli etc.) [7]–[12]. There also exist several
methods for the problem of quantum state preparation (which
cannot be solved using only classical gates). Shende et al. [13],
Möttönen et al. [5], Kaye and Mosca [14], Araujo et al. [17],
and Niemann et al. [15] propose different methods for general
state preparation, however, none of these methods can guarantee
to produce in general circuits of size less than O(2n). Mozafari
et al. [16], [18] present methods for preparing uniform states,
which also produce circuits of size O(2n).

State preparation has also been of much theoretical in-
terest [22] as it has been recognized that polynomial time
preparation methods for certain states would lead to solutions
of some of the central open problems of quantum comput-
ing [21]. Unfortunately, it has also been found that [5] there
are states that require at least 2n+1 − 2 one-qubit-gates, and
d 14 (2n+1−3n−8)e CNOT-gates when not using measurements.
Hence, there cannot exist general state preparation methods
without measurements that produce in general circuits with a

total gate count of less than
⌈

1
4 (5 · 2n+1 − 3n − 10)

⌉
. Given

these theoretical lower bounds, many existing preparation meth-
ods [5], [13]–[15] have indeed a worst-case complexity that is
optimal for the general problem. However, whenever possible,
state preparation should not be tackled with general “off-the-
shelf” methods that work for all states in the same way,
but instead the solution should adapt to specific properties
of the given state as this will typically result in asymptotic
improvements. For example, Gleinig and Hoefler [23] prepare
states in time which is polynomial in the number of non-
zero amplitudes and qubits, resulting in efficient preparation of
sparse states. Following this line of research, the goal of this
paper is to investigate efficient preparation for a complementary
class of states.

It has been conjectured that there are states that can be pre-
pared in polynomial time when allowing measurements, but that
cannot be prepared in polynomial time without measurements
(see for example chapter 3.3 of Aaronson [24]). Yet, to the
best of our knowledge, Grover’s work [19] is the only one that
investigates measurement based state preparation (MBSP) of
general states.

In this paper we present a novel approach to MBSP. Unlike
Grover, we do not use amplitude amplification. This can
increase the worst-case expected runtime quadratically, but it
can decrease the size of the circuits exponentially. This makes
our approach more resillient to noise, which under the current
limitations of quantum hardware is more important than the
actual runtime. Also compared to the previously mentioned
state preparation methods we obtain exponential improvements
on wide classes of states.

II. UNIFORM QUANTUM STATES

Uniform quantum states provide the most intuitive under-
standing of how MBSP works and yet they are an important
class of states for which preparation has been investigated in
the past [16], [18]. The general MBSP that we develop later is
a generalization that can be obtained by extending to C-valued
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x1 R H

Uf

x2 R H

xn R H

y R y y ⊕ f(x)

Fig. 1: The circuit Rf that is used by Algorithm 1. We let R de-
notes the “reset-operation”, that is, performing a measurement
and if we observe 1 apply a NOT gate.

functions what we present in this chapter for boolean functions.
We start describing the actual method, then we analyse its
complexity, and finally we discuss two examples.

A. Algorithmic description of MBSP

The idea is to prepare a state on which we can perform a
measurement which will make the state collapse to the desired
state. If we are in an (n + 1)-qubit system and start with all
qubits in the |0〉-state (which we denote |0n〉), then applying
Hadamard gates on each of the first n qubits and applying Uf
targeting the (n+ 1)-st qubit, we obtain the state

Uf (H⊗n ⊗ I) |0n+1〉 =
1√
2n

∑
x∈{0,1}n

|x〉 |f(x)〉 . (3)

If we now measure the (n+ 1)-st qubit we observe either |0〉
or |1〉. If we observe |1〉 the state collapses to

1√
|f |

∑
x∈{0,1}n,f(x)=1

|x〉 |1〉 , (4)

which is on the first n qubits identical to |f〉 as a pure state.
However, if we measure |0〉 we collapse to a state from which it
is more difficult to get to |f〉 than from the initial |0〉. Hence, we
go back to |0n+1〉 by measuring all qubits and applying NOT
to those in state |1〉. Now we can start from the beginning.
Repeating these steps we eventually observe |1〉, and hence
obtain the desired state. This method to prepare the state is
summarized as Algorithm 1. Figure 1 illustrates the circuit that
is used by this algorithm. From now on we will let Rf denote
this circuit, sf (n) the size of (optimal) classical circuits that
compute f (as a function of the input size n) and pf (n) = |f |

2n

the proportion of inputs that are mapped to 1. The following
theorem discusses the properties of Algorithm 1.

Theorem 1. If f : {0, 1}n −→ {0, 1} is a function that can be
computed with a (classical) circuit of size sf (n) and for which
a proportion pf (n) of inputs are mapped to 1, then Algorithm 1
prepares the state |f〉 with a circuit of size O(n+ sf (n)) and
an expected time of O

(
n+sf (n)
pf (n)

)
.

Proof. We first analyze how large the circuit Rf is. The initial
reseting and the application of Hadamard gates is done with a
circuit of size O(n). Since f can be computed with a classical
circuit of size sf (n), the operator Uf can also be implemented
with a quantum circuit of size O(sf (n)). Hence, the circuit Rf
has size O(n+sf (n)). To analyze how often we need to apply
this circuit, notice that the probability of observing |1〉 is given

by
∑
x∈{0,1}n,f(x)=1

∣∣∣ 1√
2n

∣∣∣2 = |f |
2n = pf (n). Hence, according

to Lemma 1 it takes on expectation O
(

1
pf (n)

)
repetitions until

we observe |1〉.

It follows from this theorem that with Algorithm 1 we can
prepare |f〉 in polynomial time whenever f is a function that
can be computed in poly(n) time and has a proportion of
Ω(1/poly(n)) non-zeros.

ALGORITHM 1: Given an (n+1)-qubit quantum sys-
tem and a circuit Uf that computes a boolean function f ,
this algorithm prepares the state

∑
x∈{0,1}n,f(x)=1 |x〉

1: do{
2: Reset all qubits to |0n+1〉;
3: Apply Hadamards on the first n qubits;
4: Apply Uf targeting last qubit;
5: Measure last qubit;
6: }while{observed |0〉}

Example 1: Let

par(x) :=

{
1 if an odd number of bits are set in x
0 otherwise (5)

denote the parity function and consider the state |par〉 =
1√
|par|

∑
x∈{0,1}n,par(x)=1 |x〉. If we want to generate this state

with our method we need to synthesize a circuit that computes
Upar |x〉 |y〉 = |x〉 |y + par(x)〉 to implement Rf . This circuit
can be constructed with n CNOT gates: one controlled on each
of the first n lines and targeting the last line. Since half of the
boolean strings of any given length have parity equal to 1, we
have |par|2n = 1

2 and hence the probability of measuring 1 is 1
2 .

Consequently, the expected number of times we need to apply
this circuit until obtaining |par〉 is 1

1
2

= 2.
Example 2: Now consider the uniform superposition over

multiples of some number q ∈ {2, 3, . . . , 2n − 1}. That is,
consider the uniform superposition over all basis states |x〉 for
which number(x) is divisible by q. Letting

fq(x) :=

{
1 if q divides number(x)
0 otherwise (6)

we can write this state as |fq〉 =
1√
|fq|

∑
x∈{0,1}n,fq(x)=1 |x〉. Using [25] we can implement

a circuit Ufq that computes fq . We can then use this circuit
to construct the circuit Rfq to prepare |fq〉 with our method.
Notice that since every q-th integer is divisible by q, we have
for this state |fq|2n ≈

1
q and hence the expected number of times

that we need to apply the circuit is ≈ q.



III. NON UNIFORM STATES

Now we consider a general quantum state |φ〉 which may be
non-uniform. That is,

|φ〉 =
∑

x∈{0,1}n
cx |x〉 , (7)

where x ∈ {0, 1}n 7→ cx ∈ C is a C-valued function. Now
let U ′c be a circuit on n + 1 qubits that maps U ′c : |x〉 |0〉 7→
|x〉 (

√
1− |cx|2 |0〉 + cx |1〉) for any x ∈ {0, 1}n. Using this

circuit we can prepare

U ′c(H
⊗n ⊗ I) |0n+1〉 =

1√
2n

∑
x∈{0,1}n

|x〉 (
√

1− |cx|2 |0〉+ cx |1〉). (8)

If we now measure the last qubit and observe |1〉, the state of
the first n qubits collapses to

∑
x∈{0,1}n cx |x〉. The problem

with this approach is that the probability of observing |1〉
is given by

∑
x∈{0,1}n

∣∣∣ cx√
2n

∣∣∣2 = 1
2n

∑
x∈{0,1}n |cx|2 = 1

2n ,
and hence the expected number of times we need to prepare
state (8) until we measure |1〉 is 2n. Now we will see how
we can improve this by “scaling up” the coefficients cx. First,
we define ĉ := maxx∈{0,1}n |cx| and consider an operator Uc

which maps Uc : |x〉 |0〉 7→ |x〉
(√

1−
∣∣ cx
ĉ

∣∣2 |0〉+ cx
ĉ |1〉

)
.

Using Uc we can prepare the state Uc(H
⊗n ⊗ I) |0n+1〉 =

1√
2n

∑
x∈{0,1}n |x〉

(√
1−

∣∣ cx
ĉ

∣∣2 |0〉+ cx
ĉ |1〉

)
.

If we now measure the last qubit and observe |1〉, the state
of the first n qubits again collapses to the desired state

1√∑
x∈{0,1}n |

cx√
2nĉ
|2

∑
x∈{0,1}n

cx√
2nĉ
|x〉 =

∑
x∈{0,1}n

cx |x〉 .

(9)
However, using the operator Uc instead of U ′c has the

advantage that the probability of observing |1〉 increases to∑
x∈{0,1}n

∣∣∣ cx√
2nĉ

∣∣∣2 = 1
2n|ĉ|2

∑
x∈{0,1}n |cx|2 = 1

2nĉ2 , and the
expected number of times we need to apply Uc has decreased
to 2nĉ2, which will be typically much smaller than 2n because
ĉ is the absolute value of an amplitude. We summarize these
insights in the following theorem.

Theorem 2. Suppose we can implement Uc with a quantum
circuit of size S. Then we can prepare the state (7) in time
which is on expectation 2n · ĉ2 · S.

Consequently, we can prepare a general state in polynomial
time whenever Uc can be implemented by circuits of poly(n)

size and ĉ ∈ O
(
poly(n)√

2n

)
.

A. Example: Sampling Assignments for MaxSat

In the MaxSat problem we are given a boolean formula
ρ(x1, . . . , xn) = ρ1(x1, . . . , xn) ∧ . . . ∧ ρd(x1, . . . , xn) in
conjunctive normal form and the goal is to find a variable
assignment x1, . . . , xn for which a maximal number of clauses
is satisfied. It is well known that sampling a variable as-
signment uniformly at random we satisfy on expectation a

number of clauses which is at least 1
2 the optimum. We

will now show how we can use the method presented in
this section to prepare a state which is a superposition over
variable assignments where the assignments that satisfy more
clauses have larger amplitudes (i.e., higher probability of being
observed). In order to construct an appropriate operator Uc
we go one by one over the clauses of the expression and for
each one of them we construct a circuit that applies the gate

R π
2d

=

[
cos
(
π
2d

)
− sin

(
π
2d

)
sin
(
π
2d

)
cos
(
π
2d

) ] on the ancilla qubit whenever

the clause is satisfied. By applying these circuits, to any initial
basis state |x〉 |0〉 for which x satisfies k clauses, we will
apply k times the gate R π

2d
on the ancilla qubit. Hence the

state of the ancilla qubit becomes
[
cos( π2d ) − sin( π2d )
sin( π2d ) cos( π2d )

]k
|0〉 =[

cos(kπ2d ) − sin(kπ2d )
sin(kπ2d ) cos(kπ2d )

]
|0〉 = cos

(
kπ
2d

)
|0〉+sin

(
kπ
2d

)
|1〉. So by

applying Hadamard gates on the first n qubits and then these
controlled rotations on the last qubit, we obtain the state

c
∑

x∈{0,1}n
|x〉
(

cos

(
kxπ

2d

)
|0〉+ sin

(
kxπ

2d

)
|1〉
)
, (10)

where kx is the number of clauses satisfied by x. Hence, if we
measure the last qubit and observe |1〉, the state collapses to

c
∑

x∈{0,1}n
sin

(
kxπ

2d

)
|x〉 , (11)

where c is a normalizing constant. Since kx is a value between 0
and d, the amplitude sin

(
kxπ
2d

)
of |x〉 gets larger as the number

kx gets larger.

IV. EXPERIMENTS

A. Noise tolerance

We used our method to prepare the state (11) from the
MaxSat example for the boolean formula

ρ(x1, . . . , x8) :=(¬x7 ∨ ¬x8) ∧ (x4 ∨ ¬x3) ∧ (¬x3 ∨ ¬x6)

∧ (¬x6 ∨ ¬x5) ∧ (x7 ∨ ¬x1) ∧ (¬x3 ∨ ¬x6)

∧ (¬x4 ∨ ¬x6) ∧ (¬x2 ∨ ¬x6).
(12)

As we know from the previous discussion, measuring this
state we should observe each basis state |x〉 a proportion of
approximately px := c · sin

(
kxπ
2d

)2
of the time, where kx is the

number of clauses satisfied by x and c is a normalizing constant.
To verify this, we first prepared this state with our method on a
“perfect quantum computer” (Qiskit’s “Qasm simulator” of a
noiseless quantum computer [26]). We prepared the state (10)
overall 50.000 times, and measuring the last qubit we observed
39.573 times |1〉, resulting 39.573 times in the preparation of
state (11). In Figure 2 we show for each variable assignment x
on the Y-axis the proportion of times p̂x that x was observed
and on the X-axis the number of clauses kx satisfied by x. We
can clearly see that the values p̂x are centered at px.

To compare the noise tolerance of our method to the noise
tolerance of the state preparation circuits synthesized by the
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Fig. 2: Our method on a QC simulator without noise

Qiskit initializer [27], which is an optimized implementation of
the method of Shende et al. [13], we repeated this experiment
on a simulator of a noisy quantum computer (the “FakeJo-
hannesburg()” backend [28]). Now we prepared the state (10)
overall 500.000 times, and measuring the last qubit we obtained
now 253.834 times the state (11) with our method. We then
prepared this state 253.834 times with the Qiskit initializer.
The results are shown in Figure 3. We can see that the values
p̂x are now in general less close to the expected values px,
but with our method they are on expectation closer together,
indiciating that our method is more noise-tolerant. This is
confirmed by Figure 4, which show the difference |px− p̂x| for
all 256 variable assignments x using our method and the Qiskit
initializer. The circuit produced by our method had 400 gates,
whereas the circuit from the Qiskit initializer had 1231 gates
(in both cases, this refers to the gate counts after transpilation
to the backend).

B. Growth of circuits

To investigate how our circuits grow as the number of
variables grows, we generated random boolean formulas with
n ranging from 3 to 11 and d = n. For each n we sampled
5 boolean formulas for which we then synthesized circuits for
state preparation with our method and the Qiskit initializer.
In Figure 4 we show the average size (after transpilation to
the backend) of the resulting circuits (the figure contains bars
representing the range from smallest to largest observed size,
but these bars are not visible as the variance is very small).
We can clearly see the linear growth of our circuits and the
exponential growth of the circuits from the Qiskit initializer.

C. Uniform states

We used our method to prepare several uniform states. We
prepared the states |par〉 from Example 1 for n ranging from 5
to 10. We also used our method to prepare |f5〉1 from Example
2 for n = 4. We also prepared the states |ρi〉 for i ranging
from 1 to 4, where ρi is the boolean function given by the
conjunction of the first i clauses of the boolean formula (12).

We also implemented Grover’s method [19]. For the mul-
ticontrolled operations in Grover’s method, we used Gidney’s
recursive construction [30] (instead of the mcx gates of Quiskit

1to compute f5 we used the circuit from [29]

since those grow exponentially in the number of controlls) and
for Uf we used the same circuits as for our method.

In Table 5 we show the size of the circuits produced by
our method, the Qiskit initializer, and Grover’s method (after
transpilation to the Qiskit gateset {’u’, ’cx’}). We also show
the expected number of times that we need to apply Rf until
collapsing to the desired state |f〉.

V. CONCLUSIONS

For states that can be “described” by some efficiently com-
putable function, measurements allow state preparation with
small quantum circuits. When a boolean function f can be
computed in polynomial time and it has at most polynomially
times more zeros than ones, then |f〉 can be prepared in
polynomial time with our MBSP approach. By considering
general C-valued (instead of boolean) functions, we can use
measurements to prepare general states. In general, regardless
of the expected number of times we need to apply the circuit,
as long as f can be computed with circuits of size o(2n) we
eventually obtain |f〉 from a circuit that is smaller than those
produced by general non-MBSP methods and this makes our
approach more noise-tolerant, which we verified experimentally
on a simulator of a quantum computer. This makes our MBSP
method an excellent choice to scale state preparation on noisy
quantum hardware.

APPENDIX

The following is a standard result from probability theory.

Lemma 1. Given a coin that shows ’Heads’ with probability
θ ∈ (0, 1], the expected number of times that we need to toss
the coin until we see ’Heads’ is given by 1

θ

Proof. Letting T (θ) denote the expected number of times for
a given θ, we have T (θ) = θ + (1 − θ)(T (θ) + 1). Hence, it
follows that T (θ) = 1

θ .
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Fig. 3: Our method on a noisy simulator (left) and Qiskit initializer on a noisy simulator [27] [13] (right).
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