Adaptive Routing Strategies for Modern High Performance Networks

Patrick Geoffray
Myricom
patrick@myri.com

Torsten Hoefler Indiana University htor@cs.indiana.edu

28 August 2008 Hot Interconnect Stanford, CA

Problem

- Vendors are liars.
- They claim full bisection networks.
 - Full bisection: Cut the world in half, any node in first half can communicate with any node of the second half, at full speed.
- Full bisection on paper only.
 - Number of links in any bisection is at least the number of pairs.
 - Clos networks, Fat trees.
- Poor effective bisection.
 - Head of Line blocking!
- Practical solutions to reduce HoL blocking?
 - Adaptive routing.

Clos Networks

- Multiple paths between pair of nodes.
- Example: 3-hop rearrangeable non-blocking Clos network with 32port crossbars.

For any given bisection pattern, there is at least one set of non-blocking routes

Context

Source-routing:

- Path in the network is chosen on the sender.
- No routing decision at each hop.
- Routes should be deadlock-free.
- Routes can be changed on a per-packet basis.

Backpressure flow-control:

- Bounded per-port buffering on each crossbar.
 - Never big enough.
 - Don't talk to me about QoS.
- Ultimately, flow-control can propagate to sender NIC.
 - Cheap way to sense contention.
 - Hard to determine where the blocking is in the path.

Simple Routing Strategies

Static routing:

- Single route per destination.
- Links globally load-balanced across routes.
- Everything is in order on the wire.
- > Very good for a few patterns, very bad for a few others, and not great for most.

Random oblivious routing:

- Multiple routes (16).
- Route changes randomly for each packet.
- Packets may not arrive in-order.
 - Higher level protocols should not be dumb enough to require order on the wire.
- Statistically average for all patterns.

Adaptive Routing Strategies

Adaptive routing:

- Multiple routes.
- Contention is sensed with back-pressure.
- Route changes after sensing contention on the current path.
- New route is chosen randomly.
- > When low contention, converges to static routing. With high contention, degenerates into random oblivious routing.

Probing adaptive routing:

- Same as adaptive, but...
- New route is first probed to check if path is free.
- Similar to adaptive, but should converge faster to non-blocking set of routes, if it does.

Testbed/Benchmark

- 512-node Myrinet cluster at University of Southern California.
 - Single 21U 512-port switch, Clos network, 32-port crossbars.
 - One single-port Myri-10G NIC in each Xeon-class node.
 - MX-1.2.7 (16 routes per peer in route table).
 - Variable node counts (leaf crossbar granularity).
- Effective bisection benchmark.
 - Randomly split the nodes in two groups of equal size...
 - Randomly pair up nodes between both groups.
 - Measure the bandwidth for 50 iterations of MPI_Sendrecv of 1 MB messages (pair-wise exchange).
 - Lather, rinse, repeat 5000 times.
- Results: Min/Avg/Max of all pair-wise bandwidths, for several nodes counts.

Static Routing

Random Oblivious Routing

Adaptive Routing

Probing Adaptive Routing

Comparing Routing Strategies

Conclusions

- Static routing is bad.
 - InfiniBand, most Ethernet switches.
- Random routing is deterministic, better at scale.
 - Require decent protocols that do not require order.
- Adaptive routing is better.
 - Probing is necessary for good performance.
- Ultimately, probing adaptive routing does not scale for very large fabrics.
 - Per-hop routing decision, hardware support (Quadrics).
- Things we didn't do:
 - How fast does the routing converge? Does it converge?
 - What about small/medium messages ?
 - What about more than 3-hop Clos networks?

A bit of hope

- Topology-aware collectives:
 - Limit domain space, faster/consistent convergence.
 - Leaf crossbar granularity in Clos networks: bridge pattern.

Bridge pattern

