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▪ Traditional DA methods are slow.

▪ Traditional DA methods make point estimatimation for posterior distribution.

▪ DA tools are not easily available

▪ AI weather models rely on reanalysis datasets.
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Motivation

Data Assimilation

Observation: 𝒚𝑡 = ℎ(𝒙𝑡
∗) Assimilated state: 𝒙𝑡~𝑝(𝒙𝑡|ෝ𝒙𝑡, 𝒚𝑡)

Ground truth state at time step 𝑡
ℎ(𝒙): Observation operator
𝐹(𝒙): Forecast operator

https://www.ecmwf.int/en/about/media-centre/news/2019/forecasting-system-upgrade-set-improve-global-weather-forecasts

Forecast based on previous step ො𝑥𝑡 = 𝐹(𝑥𝑡−1)
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Motivation

Data Assimilation

Observation: 𝒚𝑡 = ℎ(𝒙𝑡
∗)

Assimilated state: 𝒙𝑡~𝑝(𝒙𝑡|ෝ𝒙𝑡, 𝒚𝑡)

ℎ(𝒙): Observation operator
𝐹(𝒙): Forecast operator

Predicted state ෝ𝒙𝑡 = 𝐹(𝒙𝑡−1)
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General Idea

• Valid atmosphere states forms a (high-
dimensional) manifold

• 3DVar performs maximum likelihood 
estimation of posterior distribution through 
minimizing a quadrate loss function
• Assume Gaussian Process
• Need to design covariance matrix
• Need to “invert” covariance matrix 

when minimizing
• Perform gradient descent / Newton’s 

method to numerically find minima
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General Idea

• Generalize gradient of loss function into a 
learned vector field

• Denoising diffusion model defines the 
vector field via the reverse of adding 
gaussian white noise
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General Idea

• Generalize gradient of loss function into a 
learned vector field

• Denoising diffusion model defines the 
vector field via the reverse of adding 
gaussian white noise

• A diffusion model generates (unconditional) 
samples of possible atmosphere state from 
randomly generated states 
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▪ Sampling from probability distribution with denoising diffusion model
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General Idea

Forward Process:
complex distribution -> 
simple realizable distribution

Backward Process:
simple realizable distribution 
-> complex distribution

https://yang-song.net/blog/2021/score/
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▪ Sampling from probability distribution with denoising diffusion model

9

General Idea

Denoising Diffusion Model

Neural Network
𝜇𝜃(𝒙𝜏, 𝜏)

𝑝 𝒙𝜏 𝒙𝜏−1 = 𝒩(𝒙𝜏−1, 𝛽𝜏−1𝑰)

𝒙N 𝒙𝜏
𝒙𝜏−1 𝒙0

𝑝𝜃 𝒙𝜏−1 𝒙𝜏 = 𝒩 𝜇𝜃 𝒙𝜏, 𝜏 , 𝜎𝜏
2 𝑰

𝒙𝜏𝒙𝑁~𝒩(𝟎, 𝑰) 𝒙𝜏−1 𝒙0

Gaussian Distribution Target Distribution

Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, pp.6840-6851.
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▪ Normal input shape for diffusion model: (3, 512, 512)

▪ Shape of atmosphere state: (6x13+5, 721, 1440)

▪ High spatial resolution

▪ Dimension size is not power of 2 

Options:

▪ Develop a new dedicated network structure

▪ Use the structure from AI weather model having similar input/output shape!
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Challenge 1: How to diffuse on high dimensional fields?

=> Need special treatment!

AI weather 
model

Diffusion 
model

DiffDA
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▪ Conditioning for predicted state ෝ𝒙𝑡

▪ ෝ𝒙𝑡 has the same shape as the assimilated state 𝒙𝑡
𝜏

▪ Replace 𝜇𝜃(𝒙𝑡
𝜏 , 𝜏) (unconditional) with 𝜇𝜃(𝒙𝑡

𝜏 , ො𝒙𝑡 , 𝜏) (conditional)
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Challenge 2: How to add conditioning?

Diffusion ModelState with noise

Predicted State Denoised state

Concatenate in 
channel dimension

ෝ𝒙𝑡
𝒙𝑡

𝜏 𝒙𝑡
𝜏−1
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Overall Process

Denoising Diffusion Model

Neural Network

𝜇𝜃(𝒙𝑡
𝜏, ො𝒙𝑡 , 𝜏)𝒙𝑡

𝜏, ෝ𝒙𝑡𝒙𝑡
𝑁~𝒩(𝟎, 𝑰) 𝒙𝑡

𝜏−1 𝒙𝑡
0

Gaussian Distribution Target Distribution

ෝ𝒙𝑡

𝒙𝑡
0~𝑝(𝒙𝑡|ෝ𝒙𝑡)

Forecast result:
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▪ Conditioning for observations 𝒚𝑡: An inpainting approach
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Challenge 2: How to add conditioning?

• Add additional pentalty to guide generation
• Simpler than 3Dvar loss function

• 𝒚 − ℎ(𝒙) 2

• Operator splitting
• One step solution to penalty term



@spcl_eth

@spcl

spcl.ethz.ch

▪ Conditioning for observations 𝒚𝑡: An inpainting approach 

▪ Assuming 𝒚𝑡 is sparse measurement of 𝒙𝑡
∗: 𝒚𝑡 = 𝑯𝒙𝑡

∗, where 0,1 matrix 𝑯 has only one nonzero 
value in each row

▪ proof: similar to “classifier” guidance ∇𝒙𝑡
𝜏 log 𝑝(𝒙𝑡

𝜏|ෝ𝒙𝑡, 𝒚𝑡) = ∇𝒙𝑡
𝜏 log 𝑝(𝒙𝑡

𝜏|ෝ𝒙𝑡) + ∇𝒙𝑡
𝜏 log 𝑝(𝒚𝑡|𝒙𝑡

𝜏)

𝑝 𝒚𝑡 𝒙𝑡
𝜏 ≈ 𝒩 𝒚𝑡 𝑯𝔼 𝒙𝑡

0 ෝ𝒙𝑡 , 𝚺𝑦 ⇒ ∇𝒙𝑡
𝜏 log 𝑝 𝒚𝑡 𝒙𝑡

𝜏 ≈ ∇𝒙𝑡
𝜏 𝒚𝑡 − 𝑯𝔼 𝒙𝑡

0 ෝ𝒙𝑡 𝚺𝑦

2
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Challenge 2: How to add conditioning?

GraphCast 
(Diffusion)

State with noise

Predicted State
Denoised state

Mask

Interpolated state

Observation data
Add noise and merge

Inpainting Pipeline Treatment of Sparse Mask

Problem: sparse signal often suppressed in the downsampling layer 
Solution: enlarge the mask with interpolated data 
(assuming data is smooth)

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R. and Van Gool, L., 2022. Repaint: Inpainting using denoising diffusion 
probabilistic models. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11461-11471).
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Overall Process

Denoising Diffusion Model

Neural Network

𝜇𝜃(𝒙𝑡
𝜏, ො𝒙𝑡 , 𝜏)𝒙𝑡

𝜏, ෝ𝒙𝑡𝒙𝑡
𝑁~𝒩(𝟎, 𝑰) 𝒙𝑡

𝜏−1 𝒙𝑡
0

Gaussian Distribution Target Distribution

ෝ𝒙𝑡

⊙ (𝟏 − 𝒎)

𝒙𝑡 = Interpolate(𝒎′ ⊙ 𝒙𝑡
∗)

𝒎 = Softbleed 𝒎′, 𝜎𝐺

𝒎𝑖
′ = 

𝑗

𝑯𝑗𝑖 , 𝒚 = 𝑯𝒙𝑡
∗

𝝐𝜏 = 1 − ෑ

𝑠=1

𝑗−1

𝛽𝑠 𝝐′, 𝝐′~𝒩(𝟎, 𝑰)

⊙ 𝒎

+

𝒙𝑡 + 𝝐𝜏

Hard Mask

Soft Mask

Interpolated State

𝒙𝑡
0~𝑝(𝒙𝑡|ෝ𝒙𝑡 , 𝒚𝑡)

Noise
(max, ⨯)-convolution

Kernel

Hard mask

Soft mask

𝜎𝐺

scale by 1/cos(lat)
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Overall Process

GraphCast 
(Forecast)

Extract mask & 
softbleed

Interpolate & 
add noise

Inputs

GraphCast 
(Diffusion)

𝜏 −= 1

𝜏 = 𝑁

𝜏 = 0

Diffusion Process

Conditioning for 
sparse observations

Conditioning for 
the predicted state

Atmosphere states at 
previous time steps

Sparse observations

Assimilated data
Autoregressive data 
assimilation

×

×

+

𝑡 = −12ℎ

𝑡 = −6ℎ

𝑡 = 0ℎ
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▪ Backbone model: GraphCast operational (0.25deg 721x1440, 13 levels)

▪ Training data: ERA5 1979 - 2016 6hour resolution

▪ Emulate observations from ERA5: randomly sample horizontal coordinates + take all
vertical levels & variables

▪ Batch size: 48 (global), 1 (local)

▪ Num epochs: 20

▪ Optimizer: Adam, LR scheduler: warmup_cos_decay

▪ LR: 1e-5 (0%) -> 1e-4 (12%) -> 3e-6 (100%)

▪ 𝜎𝐺 = 1.5

▪ Compute resources: 48 A100 80G, 4 GPUs per node, 2 days
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Experiment Settings
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Experiments Overview

ERA5

Assimilated Data

48h Forecast on ERA5

6h Forecast on Assimilated Data

-48h

Observation Data

48h Forecast on Assimilated Data

0h 48h

Single step data assimilation

6h 12h 18h

Autoregressive 
data assimilation

48h Forecast on 
assimilated data

D
at

a

Time

Experiment 1

Experiment 2

Experiment 3
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Experiment 1 : Single step data assimilation 

ERA5

Assimilated Data

48h Forecast on ERA5

6h Forecast on Assimilated Data

-48h

Observation Data

48h Forecast on Assimilated Data

0h 48h

Single step data assimilation

6h 12h 18h

D
at

a

Time

Experiment 1
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Experiment 1: Result

3.8% total columns

(non-weighted)-RMSE

• DA results converge to ERA5 data with increasing number of observations
• With 3.8% gird points “observed”, the DA result is comparable to 12h forecast 

error (reduce lead time by 36 hours)
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Case study: Assimilated 2m temperature at 2022-01-03 06z 

Raw Observations

Assimilated Data

DiffDA

48h GraphCast Forecast

Interpolated Observations 
with softmask
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Case study: Assimilated 2m temperature at 2022-01-03 06z 

48h GraphCast Forecast Error

Interpolation Error with 8000 observation columns

Error of Assimilated Data

DiffDA

Assimilated data is better than both inputs 
(48h forecast and interpolated observations)
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Experiment 2: Autoregressive data assimilation 

ERA5

Assimilated Data

48h Forecast on ERA5

6h Forecast on Assimilated Data

-48h

Observation Data

48h Forecast on Assimilated Data

0h 48h6h 12h 18h

D
at

a

Time

Autoregressive 
data assimilation

Experiment 2
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Experiment 2: Result

Fixed observations over time Random observations over time

*

*

*

*

RMSE of Autoregressive assimilated data
RMSE of interpolated observations

*

*

• Autoregressive assimilation – prediction cycle can run 10 – 
20 cycles before diverging from observations

• DA performs better with random observations over time
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Experiment 3 : 48h forecast on single step assimilated data 

ERA5

Assimilated Data

48h Forecast on ERA5

6h Forecast on Assimilated Data

-48h

Observation Data

48h Forecast on Assimilated Data

0h 48h6h 12h 18h

48h Forecast on 
assimilated data

D
at

a

Time

Experiment 3
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Experiment 3: Result

1% total columns

(non-weighted)-RMSE

• DA results can be used as forecast inputs
• Forecast error with DA inputs (1% “observed” columns) is 

similar to 72h forecast error with ERA5 inputs (reduce lead 
time by 24 hours)
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Next Step: Towards Assimilating Real-World Observations

Observations of 2m temperature at 30.12.2022 00z from GDAS
Measurements/Total Grid Points: 10054/1036800
Fraction: 0.97 %

Challenges:
• Non-uniform distribution
• Only a subset of variables are measured
• Less observations at higher levels
• Observations are collected in a time 

window, e.g. : (-3h, 3h)
• Need quality control

Fraction: 0.05%Fraction: 16%
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Conclusions More of SPCL’s research:

… or spcl.ethz.ch

150+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.2K+ Followers

github.com/spcl 2K+ Stars
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Next Step: Towards Assimilating Real-World Observations

Observations of 2m temperature at 30.12.2022 00z from GDAS
Measurements/Total Grid Points: 10054/1036800
Fraction: 0.97 %

Challenges:
• Non-uniform distribution
• Only a subset of variables are measured
• Less observations at higher levels
• Observations are collected in a time 

window, e.g. : (-3h, 3h)
• Need quality control

Fraction: 0.05%Fraction: 16%

Next:
• assimilate real-world observations
• 4D Assimilation
• Incorporate errors in observations
• Incorporate non sparse observations
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