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ABSTRACT
The rigid MPI programming model and batch scheduling dom-
inate high-performance computing. While clouds brought new
levels of elasticity into the world of computing, supercomputers
still suffer from low resource utilization rates. To enhance super-
computing clusters with the benefits of serverless computing, a
modern cloud programming paradigm for pay-as-you-go execu-
tion of stateless functions, we present rFaaS, the first RDMA-aware
Function-as-a-Service (FaaS) platform. With hot invocations and
decentralized function placement, we overcome the major perfor-
mance limitations of FaaS systems and provide low-latency remote
invocations in multi-tenant environments. We evaluate the new
serverless system through a series of microbenchmarks and show
that remote functions execute with negligible performance over-
heads. We demonstrate how serverless computing can bring elastic
resource management into MPI-based high-performance applica-
tions. Overall, our results show that MPI applications can benefit
from modern cloud programming paradigms to guarantee high
performance at lower resource costs.

1 INTRODUCTION
The landscape of high-performance computing is dominated by the
Message-Passing Interface (MPI), a de facto standard distributed pro-
gramming paradigm. Together with job batch scheduling [40] and
multithreaded frameworks for shared-memory programming, MPI
is the leading use case for clusters and supercomputers [74]. New
MPI standards and implementations have brought the benefits of
emerging network protocols, above all with remote direct memory
access (RDMA) networks such as InfiniBand [64] and the inclusion
of RDMA programming through one-sided communication [44].
Yet, the current setup does not address all of the challenges of dis-
tributed computing, and a predominant example is the ability to
adapt resource allocation to changing application requirements.
Evolving and malleable applications [39] achieve lower efficiency
when resource allocation cannot be adjusted. These applications
can consist of multiple phases with varying parallelism. Starting
from MPI 2.0, applications are permitted to change the number of
processes during execution. However, this feature has not been
explored by many applications because of a complex setup and
lack of integration with resource managers [76]. In the rigid HPC
world, job schedulers and applications use only a fixed number of
resources, leading to overallocation and underutilization of cores.
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Figure 1: The remote invocations of an empty C++ function
on serverless platforms and rFaaS: median (solid), and 99th
latency (dashed) on a single worker.

Achieving high utilization rates of supercomputers has always
been challenging, and past predictions showed a pessimistic re-
search outlook: "the goal of achieving near 100% utilization while sup-
porting a real parallel supercomputing workload is unrealistic" [56].
Recent results are not much more optimistic: while a usage anal-
ysis of the Kraken supercomputer capacity over a year indicates
average utilization as high as 94% [87], and a median utilization
of around 90% on the Mira supercomputer [73], a four-year study
of the Blue Waters system capacity presents monthly utilization
rates that rarely exceed 80% [57]. Furthermore, on average three-
quarters of node memory is not utilized [72]. On such systems, a
10% decrease in monthly utilization rate leads to hundreds of thou-
sands of dollars of investment into hardware that stays unused. To
assess the modern scale of the problem, we analyzed over a week
the utilization of the Piz Daint supercomputing system [15], and
present in Figures 2a and 2b the CPU and memory utilization data,
respectively. The rapid and frequent changes indicate that resources
do not stay idle for an extended period of time, and this gap cannot
be addressed with persistent and long-running allocations. How-
ever, fine-grained and ephemeral programming models could take
advantage of such resources - to the benefit of both HPC users and
administrators, as idle computing and memory resources could be
offered at much lower costs. This problem is not limited to HPC and
supercomputers: data centers suffer from low utilization as well,
caused by resource overprovisioning to handle peak demand [60].
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Figure 2: Piz Daint utilization for a period of one week (31.03-7.04 in 2021): querying SLURM with a one minute interval.

In recent years, the world of computing has seen two major in-
novations brought by the cloud: elastic resource management and
a cost decrease of 5 to 7 times [22]. Even though the early examina-
tion of cloud systems showed that Infrastructure-as-a-Service (IaaS)
resources are not a viable alternative to high-performance systems,
as they are characterized by significant overheads, high costs, and
unsatisfactory I/O performance [51, 53, 70], their performance and
attractiveness has improved over time [71, 89]. Virtual machines
and containers, the important virtualization solutions in the cloud
systems, have been found to be an efficient abstraction level for
high-performance applications [50, 77], and cloud network perfor-
mance improved as well [90, 91]. The advantages of the cloud have
been quickly identified to improve the performance of on-premises
clusters by allocating computing resources in the cloud [34] (HPC
plus cloud) and executing elastic MPI applications [76] (HPC in the
cloud). In particular, the concept of HPC-as-a-Service [19] brings
a cloud abstraction model to manage and access HPC resources.
Yet, no work has fully embraced the cloud revolution to improve
the efficiency of existing supercomputing systems. The question of
incorporating elastic cloud resources into MPI applications remains
open due to a lack of a cloud-native programming model.

Function-as-a-Service (FaaS) is a new cloud paradigm combining
the full elasticity of cloud resources with a maximally simplified
programming model: users program stateless functions, and the
cloud takes away the responsibility of scheduling invocations of
such functions. Thanks to the fine-grained parallelism and the
pay-as-you-go billing system, serverless functions have become a
solution for all tasks that can benefit from an elastic allocation of
computing resources.While the progress towards HPC-as-a-Service
continues [23], functions are not yet ready for HPC applications
due to high invocation latencies and computing costs [31, 55]. For
FaaS to become a viable programming model for high-performance
applications, it must overcome the crucial performance and integra-
tion challenges: (1) fully utilize the potential of network devices, (2)
provide low-latency invocations with minimal added overheads, (3)
offer the always-available computing resources for invocations on
the critical path, (4) and integrate into existing and proven solutions
for programming and dispatching high-performance software.

We address these challenges in rFaaS, the first RDMA-capable
serverless platform with a decentralized resource management
model (Sec. 3). We show how novel hot serverless invocations im-
prove overwarm executions with an added latency of little over 300
nanoseconds on top of the fastest available network transmission.
We discuss the characteristics of HPC applications that can exploit

the benefits of rFaaS functions (Sec. 4). We present a program-
mingmodel for straightforward integration of rFaaS into new and
existing C++ MPI codebases, with a high degree of compatibility
with other standard-compliant frameworks. With the incorporation
of serverless computing into MPI applications, we make a major
step towards elastic HPC in the cloud. Furthermore, we provide a
batch system integration for the dynamic allocation of server-
less functions on idle resources (Sec. 5). Supercomputing systems
could reasonably offer idle resources at discounted rates to incen-
tivize better utilization. Therefore, this HPC-as-a-Service solution
can increase the efficiency and utilization of the overall cluster.
We demonstrate the elasticity, efficiency, and high performance of
rFaaS with an evaluation on microbenchmarks and show that HPC
workloads can be accelerated with serverless functions (Sec. 6).

Our paper makes the following contributions:
• Wepresent the design and implementation of the first RDMA-
capable serverless platform, including (1) a decentralized
FaaS resource management protocol and (2) a novel, low-
latency, and zero-copy hot type of serverless invocations.
rFaaS is publicly available on an open-source license1.

• We conduct an experimental verification against state-of-
the-art open-source and commercial serverless platforms
summarized in Figure 1 and show that rFaaS (1) has a median
overhead over pure RDMA transmission of little over 300
nanoseconds, (2) achieves the available link bandwidth, and
(3) scales efficiently up to 64 invocations on two nodes.

• We design a C++ programming model and an integration
into cluster management systems to invoke rFaaS functions
on spare cluster capacity. We show that we can improve
supercomputers’ utilization by applying modern cloud ab-
stractions to take advantage of short-lived idle resources.

• We show how rFaaS can be used in an HPC context by
accelerating MPI applications. With three case studies, we
show that speedups up to 2.2x can be achieved through task
offloading into cheap remote functions.

2 BACKGROUND
2.1 FaaS Computing
Function-as-a-service (FaaS) is a cloud service concerned with exe-
cuting stateless and short-running functions. The serverless func-
tions are dynamically allocated in the cloud, and the users are freed

1The code is available under the link https://github.com/spcl/rFaaS/
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Figure 3: A high-level view on FaaS architecture.

from the usual responsibilities of managing resources. The cloud
provider charges users only for the time and resources used in a
function execution, and applications with irregular or infrequent
workloads can benefit from the elastic allocation of computing re-
sources and the pay-as-you-go billing system. For a cloud operator,
the fine-grained executions provide an opportunity to increase sys-
tem efficiency through oversubscription and more efficient sched-
uling. Serverless is adopted by major cloud systems [1, 3–5].

We characterize the serverless platforms briefly with a high-
level overview presented in Figure 3 and refer interested readers
to a wider discussion in the literature [31, 55, 86]. Functions are
invoked via triggers (A ), including internal cloud events such as
database update or a new entry in a queue, and the standard exter-
nal trigger via a cloud HTTP gateway that exposes functions to the
outside world. A function scheduler (B ) places the invocation in
a cloud-native execution environment (C ), and the function code
is downloaded from the cloud storage (D ). Function are allowed
to initiate connections to external cloud resources and services,
and can also use the filesystem of its sandbox as a temporary stor-
age. A sandbox instance handles many consecutive invocations, so
resources are cached and reused across executions.

Invocations. The primary types are cold and warm. Cold invoca-
tions occur if the FaaS manager cannot find an idle sandbox for a
given function, and must allocate a new one. The latency includes
the time to allocate a sandbox, download the function code from ex-
ternal storage and start an executor process. In a warm invocation,
the function payload is sent directly to the executing process.

The unpredictable and high-latency cold startups are a major is-
sues with serverless [67, 81] as they can add seconds of overhead to
each invocation. Modern lightweight virtual machines are designed
to support low-latency and burstable serverless invocations [20].
However, even warm invocations can incur significant overheads.
On AWS Lambda, each invocation is processed by a dedicated man-
agement service to decide function placement [20]. The function
input is limited to a few megabytes, so users must transmit larger
payloads via the high-latency public cloud storage. The invoca-
tion’s critical path is even longer in OpenWhisk [2], as it includes
a controller, database, load balancer, and a message bus [78].

High-Performance Serverless. Serverless is used by compute-
intensive workloads such as data analytics, video encoding, linear
algebra, and machine learning [25, 41, 42, 52, 65, 69, 75, 79]. The
elastic parallelism of FaaS has so far not gained significant atten-
tion in the world of HPC applications. Such applications require
low-latency communication and optimized data movement. They
cannot tolerate the large overheads of invoking remote functions.
They need a pricing model that is fair towards compute-intensive
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Figure 4: Comparison of execution systems for HPC: rFaaS
offers the dynamic resource management of FaaS and per-
formance comparable to batch systems from HPC clusters.

functions [55]. Although recent research focuses on improving the
performance of serverless functions by exploiting data locality and
co-locating invocations on the samemachine [21], HPC applications
need fast remote invocations to achieve high scalability.

3 RDMA-BASED SERVERLESS PLATFORM
In this section, we describe rFaaS and its most important features.

rFaaS is a serverless platform tailored for the needs of high-
performance applications, combining the flexibility of FaaS systems
with the low overhead executions offered by cluster systems (Fig-
ure 4). rFaaS implements the main FaaS paradigm of remote execu-
tions of stateless functions but avoids major performance overheads
of serverless computing by replacing the REST and RPC-based invo-
cation interface with direct memory operations on remote servers.

Our philosophy in implementing rFaaS is to drastically reduce
the critical path of warm and cold invocations. We achieve this
goal by reducing the number of parties involved in transmitting
function data and removing the centralized gateway and resource
manager from the invocation path. Figure 5 shows an overview of
rFaaS: a decentralized allocation system where clients negotiate
a lease of computing resources from a frequently refreshed list
of available servers (Sec. 3.2). Our functions gain a direct RDMA
connection to executor servers without sacrificing their serverless
nature: no assumptions are made about the underlying computing
and storage hardware as in other FaaS platforms. We capitalize
on this gain further by implementing an RDMA-based invocation
system designed to minimize invocation latency (Sec. 3.3).

3.1 Components of rFaaS
Resource Manager. A global database of active resources is a

necessary component of each serverless platform. Servers become
available for function execution as soon as the database contains an
entry with a description of their resources and connection details
(❶). The role of the resource manager is to update and distribute
a ranked list of executor servers. The cluster batch system adds
and removes servers, and the manager uses heartbeats to verify the
status of executor servers periodically and remove unresponsive

3
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Figure 5: rFaaS system: resource manager receives (❶) and
distributes (❷) computing resource availability, clients allo-
cate executors (❸) and remotely invoke functions (❹).

resources. Clients can read the list of executor servers and receive
updates asynchronously through RDMA operations (❷).

Function Executor Server. When clients begin offloading server-
less tasks to rFaaS, they select executor servers to achieve the
desired number of parallel workers. These servers offer the idle
and unused hardware resources (CPU cores, memory) to support
dynamic execution of serverless functions. Clients negotiate an allo-
cation of computing resources with an executor manager (❸). The
dedicated executor manager process is responsible for connecting
new clients, initializing containerized executors, removing contain-
ers that are idle for a long time or exceed specified time limits,
and accounting for resource consumption. When an allocation is
successful, executor managers initialize an isolated execution con-
text with an RDMA-capable execution process. Finally, clients can
establish a direct RDMA connection with each allocated executor
process and invoke functions by writing function header and pay-
load directly into their memory (❹). The results are returned to the
client in a similar fashion, and the allocation status is cached on the
client’s side for consecutive invocations on warmed-up resources.

3.2 Decentralized Allocation
A feature rFaaS provides is decentralized resource management,
differentiating it from other commercial and open-source FaaS
implementations. To execute a function, clients do not involve
the resource manager. Instead, they select a permutation of re-
source servers and send allocation requests directly to those servers.
Clients use a random permutation of a sorted list of servers to de-
crease the likelihood of contention and conflicts, and ensure that
each server is requested exactly once. Upon successful allocation,
managers allocate isolated execution contexts, initialize RDMA-
aware execution processes, and notify clients. At that point, clients
can send function invocations. Connections to executor processes
are cached locally by clients to provide fast consecutive executions
on warmed-up resources. To support a straightforward deallocation
of temporary and on-demand executors, clients use the connection
status to check if the execution context is alive.

3.3 Low-Latency Invocation
A critical feature of rFaaS is ensuring invocations have a low-latency
invocation. While an on-demand allocation of idle resources im-
proves the economics of cluster batch systems, without low-latency
invocations it would be counterproductive to incorporate rFaaS
functions into HPC applications. In Figure 6, we present the steps

Manager

Executor

Client

Cold

invoke,
< 1 us + O(n) 

allocate executor

pause

Warm Hot

invoke,
< 10us + O(n)

invoke,
< 1us + O(n)

active poll notify thread active poll

allocate
< 2.5 s

sleep

Figure 6: Lifetime of an rFaaS function. Similarly to server-
less systems, the cold start times are dominated by sandbox
initialization.Warm and hot invocation times include rFaaS
overhead and latency of RDMA write of 𝑁 bytes of payload.

and overheads of various invocation models in rFaaS. Our platform
preserves the FaaS semantics of, and we extend the invocation mod-
els with a new type of hot invocation that guarantees zero-copy
executions on always ready and available hardware.

We now detail the characteristics of cold, warm and hot invoca-
tions, as well as the mechanisms offered to enable parallel function
invocation and ensure fault tolerant execution. We then describe
how the performance of invocations can be modeled.

Cold. The cold invocation includes significant overheads caused
by the initialization of an execution context. In rFaaS, clients negoti-
ate the allocation directly with executor servers by sending requests
specifying the desired number of cores, memory, and timeout for
the allocation. Clients send allocation requests iteratively until they
succeed in allocating the desired number of computing resources.
A failed allocation request is returned immediately to the client.

Executor servers initialize an isolated execution sandbox and
assign the requested computing and memory resources to it. The
executor process starts in the sandbox, accesses the selected RDMA
device, registers memory buffers, creates worker threads pinned to
assigned cores. Each executor has a configurable number of thread
workers that work independently of each other, and each one cor-
responds to a single function instance. Clients can allocate multiple
workers in a single allocation request. When the initialization is
done, the client receives the executor’s connection settings, estab-
lishes connections to all threads, and can write requests directly to
the workers. This process leads to a warm or hot invocation, de-
pending on the delay between allocation and the execution. Overall,
sandbox initialization adds on average 25 ms and 2.7 seconds of
overhead for bare-metal and Docker-based executor, respectively,
on an HPC node (Section 6). The overheads of forking and initializ-
ing a new executor dominates the cold invocation time.

Warm. Warm invocations occur when a sandbox and execution
process is already allocated. A client transmits the function payload
to a worker thread of the execution process using a direct RDMA
connection. We implement warm invocations in rFaaS with the help
of RDMA completion events. Threads do not share RDMA resources,
and they wait independently for completion events corresponding
to new invocation requests. Once a completion event arrives, the
thread wakes and executes the request. Handling RDMA comple-
tion events impacts performance, but significantly decreases the
pressure on computing resources compared to active poll methods.
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Compared to native RDMA performance, warm invocations have
an overall overhead of less than 6 microseconds for a round-trip
invocation. The thread enters the hot invocation mode immediately
after execution and polls RDMA events without sleeping to im-
prove consecutive invocations’ performance. We roll back to warm
execution after a predefined time without seeing a new invocation.

Hot. The novel hot invocations further improve the performance
of warm FaaS executions by adding the new obligation that threads
actively poll for invocation requests. Thread workers switch from
blocking on completion queues to active polling of them. Switching
to polling mode decreases the invocation latency since threads do
not enter a blocked state to wait for an interrupt generated by the
RDMA driver. This configuration decreases the overall overhead
for a round-trip invocation to ca. 300 nanoseconds on average.

3.4 Scalability
A high-performance serverless platform must handle scaling in
three domains: number of active allocations in anHPC system (users
of rFaaS), size of each allocation (number of MPI ranks offloading
work), and the number of functions invoked by each process.

Horizontal Scaling. The number of rFaaS clients in a system can
reach many thousands with jobs using serverless acceleration on
all of their MPI processes. To scale with the demand, we offer two
strategies: replication and connection optimization. First, to support
the many rFaaS clients in the system, we replicate the resource
manager where each replica serves data on executor availability.
The replicated datastores employ expensive, strongly consistent
transactions to prevent stale reads in distributed settings. However,
stale reads are not a concern for the replicated resource manager. A
stale announcement of new resources can lead to a slightly smaller
availability of computing resources for a subset of clients and only
for a short time. Similarly, removing resources from the manager
is not a problem since rFaaS clients must tolerate the volatility of
transient resources. As a result, our replicated resourcemanager can
implement a less expensive but scalable eventual consistency [84],
subject to stale reads but guaranteing that all replicas eventually
have the same view on the available computing resources.

Second, we optimize the connection structure of resource man-
agers to support efficient notifications. Between resource and exe-
cution managers, we use reliable RDMA connections, as they need
to support atomic operations. The updates in executor availabil-
ity must be distributed to thousands of clients, but the network
throughput of RDMA connections decreases significantly with the
number of clients [28, 58]. Reliability is not strictly needed to distrib-
ute delta updates, and packet losses are infrequent [58]. Therefore,
we can use unreliable datagrams and multicast for that task as it
scales much better than RDMA connections.

Executor Scaling. Thanks to the decentralized allocation policy
and a random selection, the executor managers are expected to usu-
ally receive requests only from a small fraction of potential clients.
However, when the HPC cluster achieves almost ideal utilization,
the list of available computing resources becomes very small. As
a result, significant contention can appear when a large number
of clients start a random walk over a small list of rFaaS executor
servers. To prevent clients from overwhelming executor managers,

the managers notify a selected resource manager as soon as they are
fully allocated. The resource manager distributes the information
to replicas and clients, and executor servers will not receive new
requests until they announce availability again. Resource starvation
can thus be detected much quicker, and contention can be avoided.

Parallel Invocations. rFaaS implements parallel functions invo-
cations by simultaneous dispatching of many function execution
requests to threads of remote executors. Since a client has a direct
RDMA connection to each thread worker, it can invoke functions
independently. The scalability is achieved by exploiting the non-
blocking nature of RDMA write operations and using disjoint mem-
ory buffers to store invocation results. The use of multiple RDMA
connections improves network utilization as more processing units
of a network controller are involved [58]. Thread workers execute
functions in parallel without interfering with each other. In addi-
tion, each executor thread is accounted separately and switches
between hot-warm invocations on its own, further aiding elasticity.

3.5 Fault tolerance
rFaaS clients can experience failures in two ways: when the server
is removed from the pool of active executors or is shut down uncon-
trollably, and when the function crashes the execution process. The
client library caches connections for further invocations so a server
disappearance will be detected through a disrupted RDMA connec-
tion, and will be removed from the local cache. Handling function
failures requires the the executor manager. The manager frequently
verifies the status of the executor process. When it detects that
the process exited prematurely, it notifies the client of the failure.
The user-side library repeats the invocation on other servers for a
number of retries, to avoid infinite invocations of broken functions.

Finite Resources. Cloud services provide the illusion of infinite
resources, and thanks to the large scale, serverless platforms can
guarantee a Service Level Agreement (SLA) of 99.95% (AWS [9],
Azure [8], Google [14]). On the other hand, rFaaS is an example of
opportunistic computing, and its range of operations is limited to
the spare capacity of an HPC cluster - requests beyond the available
hardware cannot be fulfilled. A failed allocation process can be
repeated after a user-defined wait time, with exponential backoff
time. This process decreases the contention on executors, but does
not guarantee resource availability: repeated backoffs might never
succeed when the cluster is close to full utilization.

We extend the fault tolerance for resource exhaustion through
the internal allocation of executors that are private to the MPI job.
This benefits applications that cannot accomodate sudden exhaus-
tion of resources, due to emerging load imbalance. In distributed
applications, processes that succeeded allocating public executors
in rFaaS, offer compute capacity to others by launching a private ex-
ecutor. These private executors provide an option for the processes
without serverless allocations to offload a part of their workload
internally and distribute tasks equally across all workers. Contrary
to cloud-based FaaS platforms that acquire new resources, rFaaS
clients still use the same hardware. Speedup is thus achieved even
when without enough remote resources for the entire application.
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3.6 Isolation
In addition to bare-metal executors, we include containerized execu-
tors to ensure privacy and security in the multi-tenant execution in
rFaaS. The main requirements imposed by rFaaS are virtualization
support for RDMA-capable network controllers and negligible per-
formance overheads. The current implementation uses Docker con-
tainers to implement isolated execution contexts for user functions.
Use of Docker in HPC systems has raised security concerns, as the
Docker daemon should not be accessible to non-trusted users [16],
this is not a concern in rFaaS: the containers are launched by the ex-
ecutor manager, and users never have neither control nor access to
the daemon. We limit the user’s code from accessing any resources,
data, and code not provided with the invocation. We use the Single
Root I/O Virtualization (SR-IOV) for the virtualization of network
controllers in a multi-tenant environment. Virtual network func-
tions provide isolated but high-performance access for different
users [36]. Software implementations for virtualization come at the
cost of non-negligible overheads and increased CPU usage [6, 61].

In principle, other solutions could be used: HPC-optimized con-
tainers such as Singularity [62] and Shifter [43], and microVMs
such as Firecracker [7, 20] that provide a higher level of isolation
with negligible performance overheads. To integrate other sand-
boxes with rFaaS, virtualization or passthrough to the RDMA NIC
must be provided, and new instances can be launched on-demand
without interacting with the batch system.

3.7 rFaaS versus FaaS
While rFaaS implements the essential semantics of FaaS comput-
ing - remote invocations on transient and multi-tenant resources
with pay-as-you-go billing - we tailor the design of the serverless
platform to the HPC world. The trigger mechanism is replaced
with decentralized allocations and direct connection to an executor,
removing the proxies and caching the connection for subsequent
invocations. While serverless platforms deploy function code from
storage when instantiating a sandbox, the rFaaS client sends the
code directly to memory, removing the latencies of external storage
and sandbox I/O operations from the critical path.

rFaaS is a fundamental building block for fast and cheap invo-
cations on idle resources. We do not provide a universal solution
for resource starvation, as different applications require alternative
approaches. Applications with tasking, fine-grained parallelism,
and load imbalance can benefit from rFaaS even if not all workers
succeed in resource allocations. On top of the standardized interface
of rFaaS, additional features can be implemented according to the
needs of specific programming frameworks: native datatypes and
serialization, collective operations, logging of invocations. Simi-
larly, rFaaS does not come with a dedicated authorization system,
as this adds overhead and can be provided through the HPC batch
systems.

4 rFaaS APPLICATION TARGETS
rFaaS can provide significant performance boosts to applications.
The guiding principle — the application never waits for remote
invocations to finish — is achieved by dividing the work such that
the round trip time of invocations and the time they are executed
are hidden by local work. Fine-grained invocations allow developers
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Figure 7: rFaaS for bulk synchronous programs: speedup
without load imbalance even on limited resources.

many opportunities to accelerate their applications. Consequently,
the low-latency invocations are critical for such tasks, and latency
plays a part in deciding what can be safely offloaded to rFaaS.

We use an analytical model to estimate the overheads of warm
and hot invocations in rFaaS, based on prior work of LogP [33] and
LogfP [48] models. The network performance is expressed with pa-
rameters such as latency, CPU overhead on the sender and receiver,
and gap factor. By learning the network parameters, estimating the
remote function execution time, andmeasuring the rFaaS overheads
(Section 6), we model the round-trip invocation time.

We design a model to decide when remote invocations can be
integrated into HPC applications, then show how to use rFaaS as an
accelerator for HPC problems. We provide examples of applications
and benchmarks that are either a natural fit or can be adapted to
use rFaaS to offload some of their work. This list is not exhaustive
but provides an intuition on using rFaaS efficiently in practice.

Massively parallel applications. These applications are extremely
malleable and can therefore make efficient use of rFaaS. A solver for
the Black-Scholes equation [45] is a good example, as it generates
many independent tasks of comparable runtime. Assuming wewant
to achieve the best possible performance, we measure the runtime
of one task 𝑇𝑙𝑜𝑐𝑎𝑙 and then compare this to the runtime 𝑇𝑖𝑛𝑣 of one
invocation using rFaaS, to which we add the round-trip network
time 𝐿. There exists a number 𝑁𝑙𝑜𝑐𝑎𝑙 of tasks such that:

𝑁𝑙𝑜𝑐𝑎𝑙 ·𝑇𝑙𝑜𝑐𝑎𝑙 ≥ 𝑇𝑖𝑛𝑣 + 𝐿 (1)
Therefore, if the number of tasks is greater than 𝑁𝑙𝑜𝑐𝑎𝑙 , up to
𝑁𝑟𝑒𝑚𝑜𝑡𝑒 tasks can be safely computed using rFaaS without incur-
ring anywaiting time.𝑁𝑟𝑒𝑚𝑜𝑡𝑒 is determined as the number of tasks
necessary to saturate the available bandwidth 𝐵: 𝐵

𝐷𝑎𝑡𝑎𝑖𝑛𝑣
. Therefore,

the throughput of the system only depends on the network link
bandwidth, and the amount of work available to rFaaS.

Task-based applications with no sharing within tasks. Task-based
applications are programs that consist of a series of tasks that must
be executed, where some tasks can depend on the results of others,
inducing a task dependency graph [80] - basically a graph stating
the order in which tasks must be executed. Task-based applications
can profit from rFaaS, as Eq. 1 still holds in this case. However, the
number of tasks that can be offloaded at any time depends on the
width of the task dependency graph at that time - the wider the
graph, the more parallelism is exposed, and therefore more tasks
can be transferred to rFaaS. As an example, we consider the prefix
scan in electron microscopy image registration [29]. The width of
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Figure 8: The systemmodel ofHPC-as-a-Service: rFaaS func-
tions integrated with MPI applications (M), running on
batch-managed clusters (B ) with dedicated accounting (A ).

the task graph in a distributed scan varies significantly between
program phases, affecting the parallel efficiency. The dispatch of
tasks expands parallel resources only when needed and limits the
static resource allocation to the most efficient configuration.

Hybrid BSP Applications. A common occurrence in HPC are ap-
plications that use MPI and a shared-memory parallel programming
framework, e.g., OpenMP, and we propose to boost the performance
of such programs using rFaaS. We assume a bulk synchronous exe-
cution at the MPI level: each rank performs mostly the same type
of computation. In this case, we consider candidates for remote in-
vocations OpenMP parallel loops or task constructs with no shared
accesses. By applying Eq. 1, we can determine how many loop iter-
ations or tasks can be safely offloaded without incurring waiting
times. Even if a small number of iterations or tasks are solved re-
motely, this can still amount to significant computational effort in
total, as each MPI process performs the same amount of work.

Since rFaaS has finite resources, the application must handle the
case of resource starvation. While this is an application-specific prob-
lem, we provide a general principle of resource-aware serverless
acceleration for BSP programs presented in Figure 7. In addition to
public executors offered by the rFaaS service, MPI processes run
private executors that allow for job-internal offloading. Thanks to
the rigid structure of bulk synchronous computations, MPI ranks
can mutually exchange their acceleration status before entering
computational loops and find acceleration partners offering private
executors. This technique allows to load-balance by distributing the
workload across the entire MPI application with a single, consistent
interface of serverless functions. Thus, load-balancing is possible
even in case of full saturation and unequal resource availability.

5 rFaaS as HPC-as-a-Service
To enable true HPC-as-a-Service through serverless computing, the
functions must easily integrate with existing parallel applications
and cluster management systems. They should not add a significant
burden on administrators when deploying the new, dynamic and
flexible computing platform and accounting system. To that end, we
present an integration model of rFaaS into the MPI-centric world
of supercomputers (Figure 8). To enable native and straightforward

Promises, FuturesInvokerAllocator

RDMA Protection Domain

Send RecvMemory
Region

RDMA Verbs
Queue Pair

allocate

register

execute
notify

connect submit receive

Figure 9: The rFaaS programming model. The model is in-
spired byC++ standarization efforts on the executor concept.

void compute(int size , rfaas:: invoker & invoker) {
① auto alloc = invoker.allocator <double >{};

// Automatically expanded with function 's header
② rfaas::buffer <double > in = alloc.input(2 * size);

rfaas::buffer <double > out = alloc.output (2 * size);
// Offload part of the computation to rFaaS

③ auto f = invoker.submit("step2", in, size , out);
// Local part of computation
step2(in.data() + size , out.data() + size , size);

④ f.get();
⑤ invoker.deallocate (); // Release computing resources.
⑥ step3(out.data(), 2 * size);
}
void init (...) {

MPI_Init (...);
rfaas:: invoker invoker{opts.rnic_device };
// Pre -allocate resources for immediate invocations.

⑦ invoker.allocate(opts.lib , opts.size * sizeof(double),
rfaas:: invoker :: ALWAYS_WARM_INVOCATIONS

);
}

Listing 1: Example of an rFaaS-accelerated MPI application.

integration of fast serverless functions with high-performance ap-
plications, we design a C++ programming model for a high degree
of compatibility with other tasking systems (Sec. 5.1). rFaaS is not
only a standalone serverless platform — it is designed as a plug-
gable component into existing cluster configurations (Sec. 5.3), and
provides a simple yet effective accounting procedure (Sec. 5.4).

5.1 Programming Model
To design the programming interface for rFaaS, we take inspi-

ration from recent developments in C++ standard for parallel and
asynchronous executors [13]. The prior work executors and their im-
plementations proved that this concept is an efficient interface for
dispatching tasks to accelerator devices [30, 46]. The programming
model presented in Figure 9 hides the complexity of RDMA verbs
under a lightweight C++ abstraction. It can be easily integrated
into existing parallel applications as presented in Listing 1, and it
can be adapted in the future to full compatibility with C++.

Allocator. The allocator (①) provides memory allocation for
RDMA-enabled memory buffers and encapsulates the memory re-
gion reserved for function header (②). The allocator can be inte-
grated effortlessly to serialize standard containers such as std::vector
and std::array, and the class ensures that all memory buffers are
page-aligned to achieve the highest bandwidth on RDMA [59].

Invoker. The client’s invoker implements the submission of re-
mote function invocations (③). It also manages RDMA connections
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to remote executors and implements the allocation and dealloca-
tion of computing resources. The status of the computation can
be queried with busy polling of the RDMA completion queue (④),
providing the lowest latency at the cost of additional CPU time.

In addition to blocking invocations, we use the std::future to
represent the result of unfinished executions. Users can query the
status of each invocation, wait for their completions, and access the
result later. Internally, the library runs a single thread that waits for
RDMA work completion events and modifies a promise associated
with a future when the corresponding invocation finishes. While
completion events have a higher latency than active polling [66],
the thread can to sleep while waiting, reducing CPU consumption.

MPI Integration. rFaaS programming model integrates natively
with MPI applications. Each MPI process manages the remote func-
tion placements independently, as shown in Figure 8. Even if a large
MPI run attempts to allocate resources simultaneously (M1), the
contention is avoided by randomly selecting computing resources.

The allocation of rFaaS functions can be performed ahead of
time (⑦) to hide the cold invocation latencies since warm executor
threads are sleeping and not incurring major charges. Remote re-
sources can be allocated and deallocated as needed (⑤), adjusting
to the varying parallelism of different phases of an MPI application.
With the abstractions for work submission and memory manage-
ment, rFaaS interface can be used by modifying only those parts of
the application that benefit from its elastic parallelism (⑥).

5.2 Function Deployment
As a serverless solution, rFaaS supports execution of arbitrary state-
less functions, and similarly to the function apps offered by Azure
Functions [3], rFaaS enables execution of different functions in the
same execution process. However, unlike other serverless platforms,
we do not rely on external storage to provide function code during
allocation, as it adds significant overhead and makes on-the-fly
code updates difficult. Instead, in rFaaS the function code is written
to executor memory during the cold initialization process (M1).
The user selects a shared library submitted to the remote invoca-
tion. Both sides query and sort the library’s exported symbols, and
during invocation, only the relative function index is submitted.

Listing 2 presents the standard function interface in rFaaS. Each
thread allocates thememory regions and notifies the client about the
address and access key for function’s input. To invoke the function
(M2), its input is written to the provided remote buffer, and the
immediate value contains a invocation identifier and a function
index. Each invocation includes the size argument specifying the
actual number of bytes written by the invoker. The function returns
the number of bytes in the output array that will be sent back to the
client. The input buffer contains a twelve-byte header containing
the address and access key for a buffer on the client’s side, and
the executor writes the output directly to the client’s memory
using an RDMA write. Thus, users gain the flexibility to invoke
functions that return results into different memory regions. The
immediate value of the return write contains the execution status
and the invocation identifier. The latter allows the client’s library
to immediately identify which execution has just finished.

1 uint32_t foo(void* in, uint32_t in_size , void* out) {
2 uint32_t in_len = in_size / sizeof(double);
3 double* input = reinterpret_cast <double*>(in);
4 double* output = reinterpret_cast <double*>(out);
5 // Application can be dispatched as shared library
6 uint32_t out_len = solve(input , in_len , output);
7 // Return value defines the output size
8 return sizeof(double) * out_len;
9 }

Listing 2: rFaaS function interface.

The library can include general-purpose static variables to store
data between invocations, similarly to a sandbox’s temporary
filesystem. It is the user’s responsibility to ensure that functions
preserve their stateless nature while accessing a shared resource.
Additional data can be made available to the executor through a
high-performance filesystem such as Lustre [85].

5.3 Batch Systems
Efficient utilization of idle cluster resources requires two basic
functionalities from a serverless platform: a release of nodes for
FaaS processing with an immediate announcement to all users, and
a single-step removal of executors from the serverless resource
pool. rFaaS implements those requirements in a simple interface
designed for integration with cluster job management systems.

Resource release. The batch system offers unused CPU cores
for the execution of short-running serverless functions. To that
end, the global resource manager offers a single REST API call
to register new resources (B1 ). The node information is sent to
the resource manager, the manager adds the server to the list of
resources, and publishes updates to all registered clients through
RDMA operations. Thus, rFaaS users become aware of the newly
available computing location in a microsecond-scale latency. This
is required to support efficient allocations on spare capacity that
can be available only for a very short period of time (Figure 2).

Resource retrieval. Idle nodes cannot be used as FaaS executors
without a safe and low-latency abort functionality. Otherwise, the
resources might not be freed efficiently for batch jobs with higher
priority. Batch systems use REST API to sent remove call with a
parameter describing the allowed time for resource deallocation
(B2 ). When the request is immediate (no further computing time is
allowed), all active functions invocations are aborted, termination
replies are sent to clients through existing RDMA channels, and
the final billing update is sent to the resource manager. Otherwise,
active invocations might be permitted to finish the computation if
their remaining compute time is lower than the permitted time limit.
No further invocations will be granted while the batch system re-
trieves resources and active connections are gracefully terminated.

5.4 Accounting
The pricing of rFaaS is presented in the equation below, and it
includes two basic cost components: allocation of cluster resources
𝐶𝑎 , and active computation time 𝐶𝑐 .

𝐶 = 𝐶𝑎 · 𝑡𝑎 +𝐶𝑐 · 𝑡𝑐
The total allocation 𝑡𝑎 measured in GB-second is calculated across
all executors as a product of allocation time and memory requested.
Whereas the total active computation time 𝑡𝑐 measured in seconds
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represents the total time all remote workers are busy with com-
putations. Costs 𝐶𝑎 and 𝐶𝑐 are measured in $ per GB-second and
$ per second, respectively, and represent the total cost of occupy-
ing and actively using system resources (i.e., cores, memory) for
a given period of time. The pricing system of rFaaS is similar to
traditional FaaS systems for provisioned function invocations [12],
where clients are charged for pre-allocation of cloud resources.
However, unlike traditional FaaS, rFaaS does not charge for invoca-
tion calls , only charging for active computation time. As a result,
clients of rFaaS only pay 𝐶𝑐 for actual computation,not including
times when remote executor threads sleep due to warm invocations.

On HPC systems, we propose that these elastic resources should
be offered at a significant discount. This can ensure better utilization
rates while not impacting the ability to schedule classical jobs, and
acknowledging they do not offer the same guarantees of availability.

The accounting procedure is implemented in a global database
associated with the resource manager (A2 ). The manager exposes
memory regions for RDMA atomic fetch-and-add operations, pro-
viding executor managers with an RDMA-native way of accumu-
lating cost results without consuming CPU resources. Similarly,
executors use atomic operations to report billing updates to their
local manager (A2 ). We accumulate charges with a granularity of
one second, and billing data is updated after accumulating new
charges larger than the granularity threshold. This avoids a loss
of accounting data due to abrupt termination of rFaaS executor
instances. Contention of atomic operations is not an issue, as cost
accumulation is never on the critical path of function invocation.

6 rFaaS IN PRACTICE
To demonstrate the fitness for purpose of rFaaS for HPC, we answer
critical questions in the form of extensive evaluation.

(1) Is rFaaS fast enough for HPC?
(2) Are the overheads for initialization prohibitively large?
(3) Does rFaaS scale with larger messages?
(4) Does rFaaS scale with more workers?
(5) Does rFaaS improve performance for a typical HPC task?
(6) Are very short rFaaS functions usable in HPC computations?
(7) Is rFaaS performance competetive against OpenMP?

Platform. For the purpose of this evaluation, we deploy rFaaS in
a local cluster and execute benchmark code on 4 nodes, each with
two 18-core Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz and 377
GB of memory. Nodes are equipped with Mellanox MT27800 Family
NICwith a 100 Gb/s Single-Port link that is configured with RoCEv2
support. Nodes communicate with each other via a switch, and we
measured an RTT latency of 3.69 𝜇s and a bandwidth of 11,686.4
MiB/s. We use Docker 20.10.5 with executor image ubuntu:20.04,
and we use the Mellanox’s SR-IOV plugin to run containers over
virtual device functions, Our software is implemented in C++, using
g++ 8.3.1, and OpenMPI 4.0.5.

6.1 Invocation Latency
We begin with the most important characteristic for rFaaS: the
latency of invoking a remote function. We measure hot and warm
invocations of a non-op function with the same input and output
size. We use a warmed-up, single-threaded, bare-metal executor
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Figure 10: The RTT of an no-op rFaaS function and network
transport, median (solid) and 99th latency (dashed).

with the main thread pinned to a CPU core, perform 10,000 repeti-
tions, and report the median. We compute the non-parametric 99%
confidence intervals of the median [47, 63], and find that the inter-
val bounds are very tight (<1%). To assess the overheads of rFaaS
invocations, we measure the latency of RDMA and TCP/IP transmis-
sions.For the former, we use ib_write_lat from the perftest package,
execute it with thread pinning and warm-up iterations, and report
the median. For the latter, we use netperf with page-aligned buffers
and process pinning, and report the mean.

The results for data sizes from 1 byte to 4 kB presented in Fig-
ure 10 show that the overhead of a no-op function in rFaaS in a
process is 326 nanoseconds on average, when compared to RDMA
writes. The measurements for a Docker-based executor present
aditional ca. 50 nanoseconds overhead over RDMA writes when
using a container. The only exception is the message size of 128
bytes, where the overhead increases to 630 nanoseconds. There,
RDMA can use message inlining for both directions of the trans-
mission which improves the performance of small messages signifi-
cantly [58]. However, the communication in rFaaS is asymmetrical:
we transmit 12 bytes more for the input. The maximal supported
inlining size is 128 bytes on our device, forcing rFaaS to use non-
inlined write operations for one direction. The average overhead of
a warm execution is 4.67 microseconds. Here, the containerization
adds a measurable performance overhead, and Docker-based warm
executions have an additional overhead of ca. 650 nanoseconds.

With slightly more than 300 nanoseconds of overhead, rFaaS
enables remote function invocation with no noticeable performance
penalty, conclusively answering: rFaaS is fast enough for HPC.

6.2 Cold Invocation Overheads
Figures 11a and 11b present the overhead of a single cold invocation
on a bare-metal and Docker-based executor, respectively. The data
comes from 1000 invocations with a single no-op C++ function,
compiled into a shared library of size 7,88 kB. In all tested configura-
tions, the longest step is the creation of workers. All other steps: the
connection establishment to the manager, submitting an allocation
and code, and code invocation, take single-digit milliseconds to
accomplish. We can therefore claim that rFaaS does not introduce
significant overheads apart from the sandbox initialization.

While the current version of Docker shows an overhead of ap-
proximately 2.7 seconds to spawn workers, approaches such as
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Figure 11: Cold invocations of rFaaS functions.

Firecracker [7] exist, that reduce this time to as little as 125 millisec-
onds. Firecracker cannot currently deploy on HPC systems, but the
developers are working towards expanding its capabilities.

The initialization time of MPI takes between 0.8 and 3 seconds for
32 processes depending on the MPI library used [88] — comparable
to the rFaaS overhead of cold initialization. Developers can over-
come this overhead by initializing rFaaS like calling MPI_Init(), and
the nonblocking nature of this process should allow rFaaS workers
to be ready to by the time MPI completes its own initialization.

We therefore claim that cold invocation overheads of rFaaS
do not pose an obstacle for the use in HPC.

6.3 Scalability with payload size.
To compare the performance of rFaaS and serverless platforms, we
evaluate a non-op C++ function that returns the provided input on
a payload range from 1 kB to 5 MB. Since other platforms cannot
accept raw memory data, we generate a base64-encoded string that
approximately matches the input size used in rFaaS.

We compare against AWS Lambda [1], a state-of-the-art commer-
cial FaaS solution, OpenWhisk [2], an open-source FaaS platform,
nightcore [54], a low-latency serverless platform. In Lambda, we
deploy a native function implemented using the official C++ Run-
time [11], we expose an HTTP endpoint with no authorization,
and run the experiment in an AWS t2.micro VM instance in the
same region as the function. We deploy on the cluster a standalone
OpenWhisk using Docker with Kafka and API gateway [10]. A C++
function in OpenWhisk is invoked as a regular application, accept-
ing inputs no larger than 125 kB through argc and argv. We deploy
a nightcore instance on the cluster with a non-op C++ function.

We present the evaluation result in Figure 1. On all payload
sizes, rFaaS clearly provides significantly better performance. rFaaS

invocations are between 695x and 3,692x faster than AWS Lambda
executions, thanks to the performance attainable with a low-latency
network and the native support for transmitting raw data that suits
high-performance applications very well. rFaaS is between 17x
and 28x times faster than nightcore, another FaaS platform with
microsecond-scale latencies. Similarly, rFaaS provides a speedup
between 5,904x and 22,406x when compared to OpenWhisk.

Therefore, we answer that rFaaS provides significant perfor-
mance improvements over contemporary FaaS platforms and rFaaS
scales well with message size.
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6.4 Scalability with parallel workers.
To verify that RDMA-capable functions scale efficiently to handle
integration into scalable applications, we place managers on 36-
core CPUs and evaluate the overheads associated with parallel
invocations. We execute the no-op function on warmed-up, bare-
metal executors having allocated from 1 to 32 worker threads.

Figure 12 presents the round-trip latencies for invoking func-
tions with 1 kB and 1MB payloads, respectively. The overhead
of handling many concurrent connections is insignificant on hot
invocations with a smaller payload. While the Docker executor
shows performance increase (hot) and decrease (warm) on the 1 kB
payload, the difference on 1MB payload is less than 1%. However,
execution times increase significantly with the number of workers
when sending 1 MB data, due to saturating network capacity (100
Gb/s). This shows that rFaaS scaling is limited only by the available
bandwidth.

Therefore, we claim that parallel scaling of rFaaS executors
is bounded only by network capacity.

6.5 Use-case: matrix-matrix multiplication
To learn how much performance can be gained by offloading com-
plex tasks to the spare capacity of HPC clusters, we use a matrix-
matrix multiplication kernel as a stand-in for compute-intensive
tasks in general, and compare the performance of a traditional MPI
application with an elastic one that uses rFaaS acceleration.

We run an MPI application where each rank performs a matrix-
matrix multiplication, averages it over 100 repetitions, and we mea-
sure the median kernel time across MPI ranks. MPI ranks are dis-
tributed across two 36-core nodes, and we pin each rank to a single
core. Then, we deploy an MPI + rFaaS application where each rank
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Figure 13: rFaaS in practice, reported medians with non-
parametric 95% CIs.

allocates a single bare-metal rFaaS function. rFaaS executors are de-
ployed on two other 36-core nodes, and with such concentration of
MPI and rFaaS computing resources, we show that sharing the net-
work bandwidth does not prevent efficient serverless acceleration.
Because of a high computation to communication ratio, we split
workload equally, and both MPI rank and the function compute half
of the result matrix. For a matrix size 𝑁 , each invocation accepts
two matrices with 𝑁 2 elements each, performs 2𝑁 3

2 floating-point
operations, and returns a matrix with 𝑁 2 elements.

Figure 13a shows rFaaS provides a speedup between 1.88x and
1.94x depending on the number of MPI processes. This speedup
is consistent as we vary the size of the multiplied matrices. We
implemented the same function on the nightcore FaaS platform. As
functions there accept only JSON arguments, we serialize matrices
with C++ libraries [17, 18]. We deployed two instances with a fixed

number of 32 function instances, and performed the same evalua-
tion. The MPI + nightcore achieves worse speedup due to the over-
head of serialization, and lower utilization of network bandwidth.
Functions with a good ratio of computation to unique memory
accesses can be accelerated with rFaaS. As long as this condition
holds, rFaaS improves the performance of HPC workloads.

6.6 Use-case: linear solver
To show a serverless acceleration of a BSP-style problem, we con-
sider the Jacobi linear solver, where a part of each iteration is
offloaded to rFaaS. For a linear system of size 𝑁 × 𝑁 , we perform
approximately 2𝑁 2 floating-point operations in each iteration. The
function receives in total 2𝑁 + 𝑁 2 elements of the system matrix,
right-hand vector, and the current solution approximation. With an
equal split of workload, the function traverses half of the system
and returns 𝑁

2 elements. The 𝑂 (𝑁 2) order of both communication
and computation would require offloading a small fraction of the
work to balance computation and communication. Instead, we per-
form a classical serverless optimization of caching resources in a
warmed-up sandbox. Since the matrix and right-hand vector do
not change between iterations, we submit them only for the first
invocation. As long as the allocated function is not removed, we
send only an updated solution vector in consequent iterations.

We evaluate the approach in the same setting as matrix multi-
plication (Section 6.5), with MPI ranks averaging Jacobi method
with 1000 iterations over ten repetitions. Figure 13b demonstrates a
speedup between 1.7 and 2.2 when rFaaS acceleration is used. Since
each iteration takes just between 1 and 15 milliseconds, results must
be returned with a minimal overhead to offer performance compa-
rable with the main MPI process: the low-latency invocations
in rFaaS apply to millisecond-scale computations.

6.7 Use-case: Black-Scholes
We show how rFaaS can accelerate a pure OpenMP application, us-
ing the Black-Scholes solver [45] from the PARSEC suite [24]. Black-
Scholes solves the same partial differential equation for different
parameters, and we dispatch independent equations to bare-metal
parallel executors. We evaluate the benchmark on native input with
approximately 229 MB of input and 38 MB of output and present
the results in Figure 13c. We show that offloading the entire work
to rFaaS scales efficiently compared to OpenMP, as long as the
workload per thread is not close to the network transmission time
of approximately 30 ms. We achieve further speedup by enhancing
the OpenMP application with offloading half of the work to the
same number of parallel workers on idle HPC resources. rFaaS of-
fers scalable parallelism bounded by network performance
only.

7 RELATEDWORK
High-performance FaaS. FuncX [27] is a federated and distributed

FaaS platform designed to bring serverless function abstraction to
scientific computing. Nonetheless, FuncX does not take advantage
of HPC networks and implements an hierarchical and centralized
design, that has long invocation paths between clients and remote
workers. As a result, even warm invocations take at least 90ms.
Nightcore [54] is a FaaS runtime that offers microsecond-scale
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warm invocations. Nightcore introduces the concept of internal
function calls — invocations made by a running function. As a result,
these internal function calls do not require inter-node communi-
cation and are satisfied locally. SAND [21] is a serverless platform
optimized for workflows of serverless functions through grouping
of functions and dedicated message buses for subsequent invoca-
tons. In contrast, rFaaS explots co-location via explicit parallelism
of executor allocation, and optimizes invocation latencies through
RDMA communication. Archipelago [82] and Wukong [26] allow
users to submit jobs that are represented as a directed acyclic graph
(DAG) of functions. They perform latency-aware scheduling of a
submitted DAGs: Wukong uses a decentralized and dynamic sched-
uling built on top of AWS Lambda, while Archipelago focuses on re-
source partitioning for decentralized schedulers and optimizing the
control plane of a serverless platform. In contrast, rFaaS provides
an HPC-centered FaaS platform where both allocation and invoca-
tion are decentralized and optimized with a direct client - worker
connection. Application-layer solutions such as Wukong, and opti-
mization strategies such as sandbox warming up in Archipelago,
can be ported to rFaaS as well.

Elastic MPI. Raveendran et al. [76] proposed a framework for
MPI programs that adapts to the elasticity of the cloud by restarting
applications with different numbers of processes. Martin et al. [68]
presented Flex-MPI, an automatic reconfiguration framework for
malleable MPI applications. Huang et al. [49] presented Adaptive
MPI, an MPI implementation in Charm++ with virtualization and
reconfiguration. Other adaptive MPI solutions focus on checkpoint-
ing and migration [32, 37, 38]. In contrast, rFaaS concentrates on
the dynamic acceleration of MPI programs with resources allocated
on-the-fly, and it requires neither restarting nor reconfiguration of
the MPI program to incorporate new parallel resources. rFaaS func-
tions can be executed on transient resources that are available only
for a short time. SR-IOV is a virtualization solution that offers high
performance [35], it cannot however use idle resources elastically
without guarantees of availability in the way rFaaS can.

Active messages. Our approach shares similar goals with Active
Messages proposed by Eicken [83]: fully utilize available network
performance by reducing operating system overheads and provid-
ing direct access to network devices. While Active Messages are
a form of Remote Procedure Calls and optimize message-passing
applications by running asynchronously short functions on the
destination, rFaaS implements the serverless semantics of invoking
functions on dynamically allocated and abstracted executors. Fur-
thermore, we enable general-purpose computing on multi-tenant
executor servers, as AM do not consider node sharing between
clients with different functions, and we allow for elastic resource
usage thanks to the pay-as-you-go billing system.

8 CONCLUSIONS
This work is the first to show that FaaS computing, the new cloud
model of stateless function invocations on dynamically allocated re-
sources, can be enhanced with low-latency network protocols such
as RDMA.We introduced hot serverless functions, a new invocation
type that expands the guarantees of warm serverless functions with
always-ready computing resources. We presented an integration

of our serverless platform with MPI and batch processing, the de
facto standard use patterns of supercomputers, to prove that high
performance can be achieved with elastic resource management.

We conducted an exhaustive evaluation of RDMA-capable func-
tions and demonstrated invocations with less than one microsecond
of overhead, efficient parallel scalability, and processing latencies
significantly lower than other FaaS platforms.

Overall, our results show that HPC applications can benefit from
modern cloud programming paradigms to guarantee high perfor-
mance at lower resource costs.
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